WMC 2018 Senior Problem 8

Calculus Level 2

Evaluate the limit below.

lim n k = 1 n 6 4 k 2 1 \large \lim _{n \to \infty}{ \sum _{ k=1 }^{ n } \frac { 6 }{ 4k^{ 2 }-1 } }

4 3.75 3 3.5 3.25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 11, 2018

S = k = 1 6 4 k 2 1 = k = 1 6 ( 2 k 1 ) ( 2 k + 1 ) = 3 k = 1 ( 1 2 k 1 1 2 k + 1 ) = 3 ( 1 1 1 3 + 1 3 1 5 + 1 5 1 7 + ) = 3 ( 1 1 3 + 1 3 1 5 + 1 5 1 7 + ) = 3 \begin{aligned} S & = \sum_{k=1}^\infty \frac 6{4k^2-1} \\ & = \sum_{k=1}^\infty \frac 6{(2k-1)(2k+1)} \\ & = 3 \sum_{k=1}^\infty \left(\frac 1{2k-1} - \frac 1{2k+1}\right) \\ & = 3 \left(\frac 11 - \frac 13 + \frac 13 - \frac 15 + \frac 15 - \frac 17 + \cdots \right) \\ & = 3 \left(1\color{#3D99F6} - \cancel{ \frac 13} + \cancel{\frac 13} \color{#D61F06} - \cancel{\frac 15} + \cancel{\frac 15} \color{#3D99F6} - \cancel{\frac 17} + \cdots \right) \\ & = 3 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...