WMC 2018 Senior Problem 9

Algebra Level 2

Evaluate

1 16 15 1 15 14 + 1 14 13 1 13 12 + 1 12 11 + 1 2 1 \frac { 1 }{ \sqrt { 16 } -\sqrt { 15 } } -\frac { 1 }{ \sqrt { 15 } -\sqrt { 14 } } +\frac { 1 }{ \sqrt { 14 } -\sqrt { 13 } } -\frac { 1 }{ \sqrt { 13 } -\sqrt { 12 } } +\frac { 1 }{ \sqrt { 12 } -\sqrt { 11 } } - \cdots +\frac { 1 }{ \sqrt { 2 } -\sqrt { 1 } }

4 2 5 3 None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 15, 2018

S = 1 16 15 1 15 14 + 1 14 13 1 13 12 + 1 12 11 + 1 2 1 = 16 + 15 ( 16 15 ) ( 16 + 15 ) 1 15 14 + 1 14 13 1 13 12 + 1 12 11 + 1 2 1 = 16 + 15 15 14 + 14 + 13 13 12 + 12 + 11 2 + 1 = 16 + 1 = 5 \begin{aligned} S & = \frac 1{\sqrt{16}-\sqrt{15}} - \frac 1{\sqrt{15}-\sqrt{14}} + \frac 1{\sqrt{14}-\sqrt{13}} - \frac 1{\sqrt{13}-\sqrt{12}} + \frac 1{\sqrt{12}-\sqrt{11}} - \cdots + \frac 1{\sqrt{2}-\sqrt{1}} \\ & = \frac {\color{#3D99F6} \sqrt{16}+\sqrt{15}}{(\sqrt{16}-\sqrt{15})\color{#3D99F6}(\sqrt{16}+\sqrt{15})} - \frac 1{\sqrt{15}-\sqrt{14}} + \frac 1{\sqrt{14}-\sqrt{13}} - \frac 1{\sqrt{13}-\sqrt{12}} + \frac 1{\sqrt{12}-\sqrt{11}} - \cdots + \frac 1{\sqrt{2}-\sqrt{1}} \\ & = {\color{#3D99F6}\sqrt{16}+\sqrt{15}} - \sqrt{15}-\sqrt{14} + \sqrt{14}+\sqrt{13} - \sqrt{13}-\sqrt{12} + \sqrt{12}+\sqrt{11} - \cdots \sqrt{2}+\sqrt{1} \\ & = \sqrt {16} + \sqrt 1 = \boxed 5 \end{aligned}

Ram Mohith
Oct 14, 2018

Just rationalize every term. All terms get cancelled expect the first one and last one. 16 + 1 4 + 1 = 5 \sqrt{16} + \sqrt{1} \\ \implies 4 + 1 = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...