WMC 2018 Pursuit - Pack 2, C2

Algebra Level 2

Let

y = x + 1 x + 1 x + 1 . . . \large y=\sqrt{x}+\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}+\frac{1}{...}}}

If x = 12 x=12 , then y y can be written as a + b a+\sqrt{b} , find a + b a+b .

WMC Pursuit Questions


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

y = x + 1 x + 1 x + 1 y = x + 1 y y 2 x y 1 = 0 y = x + x + 4 2 Note that the RHS > 0 and hence y > 0 = 12 + 12 + 4 2 = 2 + 3 \begin{aligned} y & = \sqrt x + \frac 1{\sqrt x+\frac 1{\sqrt x + \frac 1\cdots}} \\ y & = \sqrt x + \frac 1y \\ y^2 - \sqrt x y - 1 & = 0 \\ y & = \frac {\sqrt x + \sqrt{x + 4}}2 & \small \color{#3D99F6} \text{Note that the RHS }>0 \text{ and hence } y > 0 \\ & = \frac {\sqrt {12}+\sqrt{12+4}}2 \\ & = 2 + \sqrt 3 \end{aligned}

Therefore, a + b = 2 + 3 = 5 a+b = 2+3 = \boxed 5 .

Sir but we will get y = 12 ± 16 2 y = \dfrac{\sqrt{12} \pm \sqrt{16}}{2} then why we are only selecting the positive one y = 12 + 16 2 \implies y = \dfrac{\sqrt{12} + \sqrt{16}}{2} .

Ram Mohith - 2 years, 8 months ago

Log in to reply

Because x > 0 \sqrt x > 0 and the R H S > 0 RHS >0 .

Chew-Seong Cheong - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...