Wonderful property usage

Algebra Level 4

Give that a a and b b are positive numbers such that their sum equals to 1, and denote m m as the minimum value of ( a + 1 a ) 2 + ( b + 1 b ) 2 \left(a + \frac1a\right)^2 + \left(b+\frac1b\right)^2 . Find the value of m \lfloor m \rfloor .


You can try my other sequences And series problems by clicking here : Part II and here : Part I .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Jordi Bosch
Oct 1, 2014

a + b = 1 a + b = 1 & a + b 2 a b 1 4 a b 1 a b 4. a + b \ge 2\sqrt{ab} \Rightarrow \frac{1}{4} \ge ab \Rightarrow \frac{1}{ab} \ge 4.

By Cauchy-Schwarz, we get:

( x 2 + y 2 ) ( 1 2 + 1 2 ) ( x + y ) 2 x 2 + y 2 ( x + y ) 2 2 \large (x^{2} + y^{2})(1^{2} + 1^{2}) \ge {(x+y)^{2}} \Rightarrow x^{2} + y^{2} \ge \frac{(x + y)^{2}}{2} . ( a + 1 a ) 2 + ( b + 1 b ) 2 1 2 [ a + b + 1 a + 1 b ] 2 = 1 2 ( 1 + 1 a b ) 1 2 ( 5 ) 2 25 2 \large (a + \frac{1}{a})^{2} +( b + \frac{1}{b})^{2} \ge \frac{1}{2}[a+b+\frac{1}{a} + \frac{1}{b}]^{2} = \frac{1}{2}(1 + \frac{1}{ab}) \ge \frac{1}{2}(5)^{2} \ge \boxed{\frac{25}{2}}

We indeed see this minimum is attained when a = b = 1 2 a = b = \frac{1}{2}

Using of Jensen's Inequality trivializes the problem.

Let f ( x ) = ( x + 1 x ) 2 f(x)=\left(x+\dfrac{1}{x}\right)^2 . Then, if we plot a graph for f ( x ) f(x) , we can see that f ( x ) f(x) is convex x > 0 \forall x\gt 0 . So, Jensen's Inequality is applicable for f ( x ) f(x) . The verification can be done by checking the equality case.

Prasun Biswas - 6 years, 4 months ago

Really Nice One!

Bhargav Upadhyay - 6 years, 3 months ago

I solved it using AM GM .

Venkata Karthik Bandaru - 6 years, 2 months ago
U Z
Oct 28, 2014

a + b =1

therefore a right angled triangle will be formed

solution solution

now let lenth(perpendicular + base) = x

thus if perpendicular is y than base is x -y

thus area of the triangle = 1 2 ( x ) ( x y ) = 1 2 ( x 2 x y ) \frac{1}{2}(x)(x - y) = \frac{1}{2}(x^{2} - x y)

now f ( x ) = 1 2 ( x 2 x y ) f(x) = \frac{1}{2}(x^{2} - x y)

then f ( x ) = 2 x y f'(x) = 2x - y f'(x) = 0 then x = y 2 x = \frac{y}{2}

now f " ( x ) = 2 f"(x) = 2 therefore it is the point of minima thus a = b = 1/2

now keeping the value we get 12

New meathod... :)

Mohit Kuri - 6 years, 7 months ago

nice method bro..

Purvik Kalariya - 6 years, 5 months ago
Sualeh Asif
Oct 29, 2014

My attempt at a solution without words:

f ( x ) = ( a + 1 a ) 2 + ( b + 1 b ) 2 f(x)=(a+\frac{1}{a} )^{2}+(b+\frac{1}{b} )^{2}

= a 2 + 1 a 2 + 2 + b 2 + 1 b 2 + 2 =a^{2}+\frac{1}{a^{2}} +2+b^{2}+\frac{1}{b^{2}} +2

f ( x ) = 2 a 2 a 3 + 2 b 2 b 3 f^{'}(x)=2a-\frac{2}{a^{3}} +2b-\frac{2}{b^{3}}

2 a 4 b 3 2 b 3 + 2 b 4 a 3 2 a 3 = 0 2a^{4}b^{3}-2b^{3}+2b^{4}a^{3}-2a^{3}=0

2 ( a 4 b 3 b 3 + b 4 a 3 a 3 ) = 0 2(a^{4}b^{3}-b^{3}+b^{4}a^{3}-a^{3})=0

(differentiating w.r.t x) 12 a 3 b 2 3 b 2 + 12 a 2 b 3 3 a 2 = 0 \text{(differentiating w.r.t x)}12a^{3}b^{2}-3b^{2}+12a^{2}b^{3}-3a^{2}=0

(differentiating w.r.t x) 72 a 2 b 6 b + 72 a b 2 6 a = 0 \text{(differentiating w.r.t x)}72a^{2}b-6b+72ab^{2}-6a=0

6 ( 12 a 2 b b + 12 a b 2 a ) = 0 6(12a^{2}b-b+12ab^{2}-a)=0

12 a 2 ( 1 a ) ( 1 a ) + 72 a ( 1 a ) 2 a = 0 12a^{2}(1-a)-(1-a)+72a(1-a)^{2}-a=0

12 a 2 12 a 3 1 + a + 12 ( 1 2 a + a 2 ) a a = 0 12a^{2}-12a^{3}-1+a+12(1-2a+a^{2})a-a=0

12 a 2 12 a 3 1 + a + 12 a 24 a 2 + 12 a 3 a = 0 12a^{2}-12a^{3}-1+a+12a-24a^{2}+12a^{3}-a=0

12 a 2 + 12 a 1 -12a^{2}+12a-1

(differentiating w.r.t x) 24 a + 12 = 0 \text{(differentiating w.r.t x)}-24a+12=0

a = 1 2 b = 1 2 a=\boxed{\frac{1}{2}} b=\boxed{\frac{1}{2}}

( 0.5 + 1 0.5 ) 2 + ( 0.5 + 1 0.5 ) 2 (0.5+\frac{1}{0.5} )^{2}+(0.5+\frac{1}{0.5} )^{2}

2. 5 2 + 2. 5 2 2.5^{2}+ 2.5^{2}

12.5 12.5

12.5 = 12 \left\lfloor 12.5\right\rfloor = \boxed{12}

To all those who did not like the 3 words I used I am really sorry but they were very important. You may ignore them.

Mohammed Imran
Apr 17, 2020

Let f ( x ) = ( x + 1 x ) 2 f(x)=(x+\frac{1}{x})^2 . Since f ( x ) f(x) is a convex function, by Jensen's Inequality, we have f ( a + b 2 ) f ( a ) + f ( b ) 2 f(\frac{a+b}{2}) \leq \frac{f(a)+f(b)}{2} so, we have f ( a ) + f ( b ) 12.5 f(a)+f(b) \geq 12.5 and hence [ 12.5 ] = 12 [12.5]=\boxed{12}

Akhilesh Vibhute
Nov 17, 2015

Let √a=cos∆ & √b=sin∆ substitute mimnima occurs at ∆=π/4 .....As simple as that :-)

Rahul Kharbanda
Jun 9, 2015

put a=b=1/2 ,,,,,,,and get ans...........=12.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...