Work by line integrals

Find the work done by the force field F ( x , y ) = x 2 i ^ x y j ^ \displaystyle \vec{F}(x,y)=x^2\hat{i}-xy\hat{j} , where i ^ \hat{i} and j ^ \hat{j} are unit vectors, moving a particle along the quarter circle given by the vector function r ( t ) = < cos ( t ) , sin ( t ) > \vec{r}(t)=<\cos(t),\sin(t)> , 0 t π / 2 0\leq t \leq \pi/2


The answer is -0.666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krishna Karthik
Dec 16, 2018

The work done is given by the line integral:

C F d r \displaystyle \int_C \overrightarrow{F} \cdot d \overrightarrow{r} = C F ( r ( t ) ) r ( t ) d t \displaystyle \int_C \overrightarrow{F}(\overrightarrow{r}(t)) \cdot \overrightarrow{r}\prime(t) dt

F ( r ( t ) ) = < cos 2 ( t ) , sin ( t ) cos ( t ) > \displaystyle \overrightarrow{F}(\overrightarrow{r}(t)) = <\cos^2(t),\sin(t) \cos(t)>

r ( t ) = < sin ( t ) , cos ( t ) > \displaystyle \overrightarrow{r\prime}(t)=<-\sin(t),\cos(t)>

Therefore the work done is:

0 π / 2 ( 2 cos 2 ( t ) sin ( t ) ) d t \displaystyle \int_{0}^{\pi/2} (-2\cos^2(t)\sin(t))dt

= 2 3 \displaystyle \frac{-2}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...