Work of the forces

Two forces ( 6 i ^ + 2 j ^ 3 k ^ ) N \left(6\hat{i} + 2\hat{j} - 3\hat{k}\right) \si{\newton} and ( 5 i ^ 3 j ^ + 7 k ^ ) N \left(5\hat{i} - 3\hat{j} + 7\hat{k}\right) \si{\newton} act on an object that moves on a frictionless surface and, in doing so, displace it from ( 2 i ^ + 3 j ^ 5 k ^ ) m \left(2\hat{i} + 3\hat{j} - 5\hat{k}\right) \si{\metre} to ( 3 i ^ 3 j ^ + 4 k ^ ) m \left(-3\hat{i} - 3\hat{j} + 4\hat{k}\right) \si{\metre} .

Find the magnitude of the work done on the object, W W in joules.


The answer is 13.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Jul 5, 2016

The sum total of the forces acting on the body is ( ( 6 + 5 ) i ^ + ( 2 3 ) j ^ + ( 3 + 7 ) k ^ ) N = ( 11 i ^ j ^ + 4 k ^ ) N \left((6+5)\hat{i} + (2-3)\hat{j} + (-3+7)\hat{k}\right)N = \left(11\hat{i} - \hat{j} + 4\hat{k}\right)N .

The displacement caused is ( ( 3 2 ) i ^ + ( 3 3 ) j ^ + ( 4 ( 5 ) ) k ^ ) m = ( 5 i ^ 6 j ^ + 9 k ^ ) m \left((-3-2)\hat{i} + (-3-3)\hat{j} + (4-(-5))\hat{k}\right)m = \left(-5\hat{i} - 6\hat{j} + 9\hat{k}\right)m .

W = F S = ( ( 11 i ^ j ^ + 4 k ^ ) ( 5 i ^ 6 j ^ + 9 k ^ ) ) J = ( 11 × 5 ) + ( 1 × 6 ) + ( 4 × 9 ) = 55 + 6 + 36 = 13 J W = 13 \begin{aligned} \vec{W} & = \vec{F} \cdot \vec{S}\\ \\ & = \left(\left(11\hat{i} - \hat{j} + 4\hat{k}\right) \cdot \left(-5\hat{i} - 6\hat{j} + 9\hat{k}\right)\right)J\\ \\ & = (11 × -5) + (-1 × -6) + (4 × 9)\\ \\ & = -55 + 6 + 36\\ \\ & = -13 J\\ \\ \therefore |W| & = \color{#3D99F6}{\boxed{13}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...