Working with Cubic Polynomial

Algebra Level 5

For a positive integer k 2 k\geq 2 , let a k , b k , c k a_k,b_k,c_k be the complex roots of the equation ( x 1 k 1 ) ( x 1 k ) ( x 1 k + 1 ) = 1 k \left(x-\dfrac{1}{k-1}\right)\left(x-\dfrac{1}{k}\right)\left(x-\dfrac{1}{k+1}\right)=\dfrac{1}{k} and let p k = a k ( b k + 1 ) , q k = b k ( c k + 1 ) and r k = c k ( a k + 1 ) . p_k=a_k(b_k+1), q_k = b_k(c_k+1)\text{ and } r_k = c_k(a_k+1). Given that k = 2 p k q k r k k + 1 = m n \sum_{k=2}^\infty \dfrac{p_kq_kr_k}{k+1} = \dfrac{m}{n} for some coprime positive integers m m and n n , find m + n m+n .


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By Vieta's formula, we obtain a k + b k + c k = 1 k 1 + 1 k + 1 k + 1 = 3 k 2 1 k ( k 2 1 ) a k b k + b k c k + c k a k = 1 k ( k 1 ) + 1 k ( k + 1 ) + 1 ( k + 1 ) ( k 1 ) = 3 k 2 1 a k b k c k = 1 k ( k 2 1 ) + 1 k = k k 2 1 . \begin{aligned} a_k+b_k+c_k &= \dfrac{1}{k-1}+\dfrac{1}{k}+\dfrac{1}{k+1} = \dfrac{3k^2-1}{k(k^2-1)}\\ a_kb_k+b_kc_k+c_ka_k &= \dfrac{1}{k(k-1)}+\dfrac{1}{k(k+1)}+\dfrac{1}{(k+1)(k-1)} = \dfrac{3}{k^2-1} \\ a_kb_kc_k &= \dfrac{1}{k(k^2-1)}+\dfrac{1}{k} = \dfrac{k}{k^2-1}. \end{aligned} Then we have ( a k + 1 ) ( b k + 1 ) ( c k + 1 ) = a k b k c k + a k b k + b k c k + c k a k + a k + b k + c k + 1 = k k 2 1 + 3 k 2 1 + 3 k 2 1 k ( k 2 1 ) + 1 = k 2 + 3 k 1 k ( k 1 ) \begin{aligned} (a_k+1)(b_k+1)(c_k+1) &= a_kb_kc_k+a_kb_k+b_kc_k+c_ka_k+a_k+b_k+c_k+1\\ &= \dfrac{k}{k^2-1}+\dfrac{3}{k^2-1} + \dfrac{3k^2-1}{k(k^2-1)}+1\\ &= \dfrac{k^2+3k-1}{k(k-1)} \end{aligned} which gives p k q k r k = a k b k c k ( a k + 1 ) ( b k + 1 ) ( c k + 1 ) = k k 2 1 k 2 + 3 k 1 k ( k 1 ) = k 2 + 3 k 1 ( k + 1 ) ( k 1 ) 2 . \begin{aligned} p_kq_kr_k &= a_kb_kc_k(a_k+1)(b_k+1)(c_k+1)\\ &= \dfrac{k}{k^2-1}\cdot \dfrac{k^2+3k-1}{k(k-1)}\\ &= \dfrac{k^2+3k-1}{(k+1)(k-1)^2}.\\ \end{aligned} Thus, k = 2 p k q k r k ( k + 1 ) = k = 2 k 2 + 3 k 1 ( k + 1 ) 2 ( k 1 ) 2 . \begin{aligned} \sum_{k=2}^\infty \dfrac{p_kq_kr_k}{(k+1)} = \sum_{k=2}^\infty \dfrac{k^2+3k-1}{(k+1)^2(k-1)^2}. \end{aligned} Since k 2 + 3 k 1 ( k + 1 ) 2 ( k 1 ) 2 = 1 2 ( k + 1 ) 3 4 ( k + 1 ) 2 + 1 2 ( k 1 ) + 3 4 ( k 1 ) 2 , \begin{aligned} \dfrac{k^2+3k-1}{(k+1)^2(k-1)^2} = -\dfrac{1}{2(k+1)}-\dfrac{3}{4(k+1)^2}+\dfrac{1}{2(k-1)}+\dfrac{3}{4(k-1)^2}, \end{aligned} we see that the given sum telescopes: k = 2 p k q k r k k + 1 = 1 2 k = 2 ( 1 k 1 1 k + 1 ) + 3 4 k = 2 ( 1 ( k 1 ) 2 1 ( k + 1 ) 2 ) = 1 2 ( 1 + 1 2 ) + 3 4 ( 1 + 1 4 ) = 3 4 + 15 16 = 27 16 . \begin{aligned} \sum_{k=2}^\infty \dfrac{p_kq_kr_k}{k+1} &= \dfrac{1}{2}\sum_{k=2}^\infty\left(\dfrac{1}{k-1}-\dfrac{1}{k+1}\right)+\dfrac{3}{4}\sum_{k=2}^\infty\left(\dfrac{1}{(k-1)^2}-\dfrac{1}{(k+1)^2}\right)\\ &= \dfrac{1}{2}\left(1+\dfrac{1}{2}\right)+\dfrac{3}{4}\left(1+\dfrac{1}{4}\right)\\ &= \dfrac{3}{4}+\dfrac{15}{16}=\dfrac{27}{16}. \end{aligned} Hence, we get m + n = 27 + 16 = 43 m+n=27+16=\boxed{43} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...