Working with Tangents

Geometry Level 5

sin x cos y + sin y cos x = 1 , cos x sin y + cos y sin x = 6 \large \dfrac { \sin x }{ \cos y } +\dfrac { \sin y }{ \cos x } =1, \ \ \ \ \ \dfrac { \cos x }{ \sin y } +\dfrac { \cos y }{ \sin x } =6

Let x , y x,y be real numbers that satisfy the equations above.

Suppose that tan x tan y + tan y tan x = p q \dfrac { \tan x }{ \tan y } +\dfrac { \tan y }{ \tan x } =\dfrac{p}{q} for relatively prime positive integers p p and q q . Find p + q p+q .


The answer is 137.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

汶良 林
May 21, 2015

Write a solution.

Let a = sin ( x ) cos ( y ) a = \dfrac{\sin(x)}{\cos(y)} and b = sin ( y ) cos ( x ) . b = \dfrac{\sin(y)}{\cos(x)}. Then we can write the system of equations as

a + b = 1 , 1 a + 1 b = 6 1 a + 1 1 a = 6 1 = 6 a ( 1 a ) a + b = 1, \dfrac{1}{a} + \dfrac{1}{b} = 6 \Longrightarrow \dfrac{1}{a} + \dfrac{1}{1 - a} = 6 \Longrightarrow 1 = 6a(1 - a)

6 a 2 6 a + 1 = 0 a = 6 ± 36 24 12 = 3 ± 3 6 . \Longrightarrow 6a^{2} - 6a + 1 = 0 \Longrightarrow a = \dfrac{6 \pm \sqrt{36 - 24}}{12} = \dfrac{3 \pm \sqrt{3}}{6}.

Then b = 1 a = 3 3 6 . b = 1 - a = \dfrac{3 \mp \sqrt{3}}{6}. Because of this symmetry, we can, without loss of generality, let a = 3 + 3 6 a = \dfrac{3 + \sqrt{3}}{6} and b = 3 3 6 . b = \dfrac{3 - \sqrt{3}}{6}.

This gives us a b = tan ( x ) tan ( y ) = 6 36 = 1 6 ab = \tan(x)\tan(y) = \dfrac{6}{36} = \dfrac{1}{6} , and so

tan ( x ) tan ( y ) + tan ( y ) tan ( x ) = tan 2 ( x ) + tan 2 ( y ) tan ( x ) tan ( y ) = 6 ( sec 2 ( x ) + sec 2 ( y ) 2 ) , \dfrac{\tan(x)}{\tan(y)} + \dfrac{\tan(y)}{\tan(x)} = \dfrac{\tan^{2}(x) + \tan^{2}(y)}{\tan(x)\tan(y)} = 6*(\sec^{2}(x) + \sec^{2}(y) - 2), (A).

Now a = sin ( x ) cos ( y ) = 3 + 3 6 sin ( x ) = 3 + 3 6 cos ( y ) , a = \dfrac{\sin(x)}{\cos(y)} = \dfrac{3 + \sqrt{3}}{6} \Longrightarrow \sin(x) = \dfrac{3 + \sqrt{3}}{6}\cos(y), and

b = sin ( y ) cos ( x ) = 3 3 6 cos ( x ) = 6 3 3 sin ( y ) = ( 3 + 3 ) sin ( y ) . b = \dfrac{\sin(y)}{\cos(x)} = \dfrac{3 - \sqrt{3}}{6} \Longrightarrow \cos(x) = \dfrac{6}{3 - \sqrt{3}}\sin(y) = (3 + \sqrt{3})\sin(y).

Thus sin 2 ( x ) + cos 2 ( x ) = 2 + 3 6 cos 2 ( y ) + ( 12 + 6 3 ) sin 2 ( y ) \sin^{2}(x) + \cos^{2}(x) = \dfrac{2 + \sqrt{3}}{6}\cos^{2}(y) + (12 + 6\sqrt{3})\sin^{2}(y)

1 = 2 + 3 6 cos 2 ( y ) + ( 12 + 6 3 ) ( 1 cos 2 ( y ) ) \Longrightarrow 1 = \dfrac{2 + \sqrt{3}}{6}\cos^{2}(y) + (12 + 6\sqrt{3})(1 - \cos^{2}(y))

cos 2 ( y ) ( 12 + 6 3 2 + 3 6 ) = 11 + 6 3 \Longrightarrow \cos^{2}(y)\left(12 + 6\sqrt{3} - \dfrac{2 + \sqrt{3}}{6}\right) = 11 + 6\sqrt{3}

sec 2 ( y ) = 35 ( 2 + 3 ) 6 ( 11 + 6 3 ) = 35 ( 4 3 ) 78 . \Longrightarrow \sec^{2}(y) = \dfrac{35(2 + \sqrt{3})}{6(11 + 6\sqrt{3})} = \dfrac{35(4 - \sqrt{3})}{78}.

Now a 2 = sin 2 ( x ) sec 2 ( y ) = 2 + 3 6 , a^{2} = \sin^{2}(x)\sec^{2}(y) = \dfrac{2 + \sqrt{3}}{6}, so

sin 2 ( x ) = 2 + 3 6 78 35 ( 4 3 ) = 11 + 6 3 35 , \sin^{2}(x) = \dfrac{2 + \sqrt{3}}{6} * \dfrac{78}{35(4 - \sqrt{3})} = \dfrac{11 + 6\sqrt{3}}{35}, and thus

cos 2 ( x ) = 1 sin 2 ( x ) = 24 6 3 35 \cos^{2}(x) = 1 - \sin^{2}(x) = \dfrac{24 - 6\sqrt{3}}{35}

sec 2 ( x ) = 35 6 ( 4 3 ) = 35 ( 4 + 3 ) 78 . \Longrightarrow \sec^{2}(x) = \dfrac{35}{6(4 - \sqrt{3})} = \dfrac{35(4 + \sqrt{3})}{78}.

Thus equation (A) becomes

6 ( 35 ( 4 3 ) 78 + 35 ( 4 + 3 ) 78 2 ) = 6 ( 280 78 2 ) = 124 13 , 6*\left(\dfrac{35(4 - \sqrt{3})}{78} + \dfrac{35(4 + \sqrt{3})}{78} - 2\right) = 6*\left(\dfrac{280}{78} - 2\right) = \dfrac{124}{13},

and so p + q = 124 + 13 = 137 . p + q = 124 + 13 = \boxed{137}.

Flawless as always!Perfect job sir Brian!

Arian Tashakkor - 6 years ago

Log in to reply

Thanks, Arian. :)

Brian Charlesworth - 6 years ago
Jason Hughes
May 21, 2015

Let a = cos x sin y a=\frac{\cos x}{\sin y} and b = cos y sin x b=\frac{\cos y}{\sin x} thus from sin x cos y + sin x cos y = 1 \frac{\sin x}{\cos y} +\frac{\sin x}{\cos y} =1 and cos x sin y + cos y sin x = 6 \frac{\cos x}{\sin y} +\frac{\cos y}{\sin x}=6 . a + b = 6 , 1 a + 1 b = 1 a+b=6, \frac{1}{a}+\frac{1}{b}=1 . This leads to 1 b + 1 6 b = 1 \frac{1}{b}+\frac{1}{6-b}=1 . thus 6 = 6 b b 2 6=6b-b^2 and b = 3 ± 3 b=3 \pm \sqrt3 . Let b = 3 + 3 b=3+\sqrt3 and a = 3 3 a=3-\sqrt3 .

cos x sin y = 3 3 \frac{\cos x}{\sin y}= 3-\sqrt3 and cos y sin x = 3 + 3 \frac{\cos y}{\sin x}=3+\sqrt3

so cos x = ( 3 3 ) sin y \cos x=(3-\sqrt3)\sin y and cos y = ( 3 + 3 ) sin x \cos y = (3+\sqrt3)\sin x

cos 2 x + sin 2 x = 1 , cos 2 y + sin 2 y = 1 \cos^2 x+ \sin^2 x=1, \cos^2 y+ \sin^2 y=1 . substitute x's for y's and y's for x's to get two equations.

( ( 3 3 ) sin y ) 2 + ( cos y 3 + 3 ) 2 = 1 ( (3-\sqrt3)\sin y)^2+ (\frac{\cos y}{3+\sqrt3})^2=1 and ( ( 3 + 3 ) sin x ) 2 + ( cos x 3 3 ) 2 = 1 ( (3+\sqrt3)\sin x)^2 + (\frac{\cos x}{3-\sqrt3})^2 =1

Note 1 3 3 = 1 6 ( 3 + 3 ) \frac{1}{3-\sqrt3}= \frac{1}{6}(3+\sqrt3) and 1 3 + 3 = 1 6 ( 3 3 ) \frac{1}{3+\sqrt3}=\frac{1}{6}(3-\sqrt3)

We then simplify these equations and solve for sin x \sin x and sin y \sin y

( 3 3 ) 2 ( sin 2 y + 1 36 cos 2 y ) = 1 (3-\sqrt3)^2(\sin^2 y +\frac{1}{36}\cos^2 y)=1

( 3 + 3 ) 2 ( sin 2 x + 1 36 cos 2 x ) = 1 (3+\sqrt3)^2(\sin^2x + \frac{1}{36}\cos^2 x)=1

\Longrightarrow

sin 2 y + 1 36 ( 1 sin 2 y ) = 1 ( 3 3 ) 2 \sin^2 y +\frac{1}{36}(1-\sin^2 y)=\frac{1}{(3-\sqrt3)^2}

sin 2 x + 1 36 ( 1 sin 2 x ) = 1 ( 3 + 3 ) 2 \sin^2 x +\frac{1}{36}(1-\sin^2 x)=\frac{1}{(3+\sqrt3)^2}

\Longrightarrow

35 36 sin 2 y + 1 36 = 1 6 ( 2 3 ) \frac{35}{36}\sin^2 y +\frac{1}{36}=\frac{1}{6}(2-\sqrt3)

35 36 sin 2 x + 1 36 = 1 6 ( 2 + 3 ) \frac{35}{36}\sin^2 x +\frac{1}{36}=\frac{1}{6}(2+\sqrt3)

\Longrightarrow

35 36 sin 2 y = 11 + 6 3 36 \frac{35}{36}\sin^2 y=\frac{11+6\sqrt3}{36}

35 36 sin 2 x = 11 6 3 36 \frac{35}{36}\sin^2 x =\frac{11-6\sqrt3}{36}

\Longrightarrow

sin y = 11 + 6 3 35 \sin y=\sqrt\frac{11+6\sqrt3}{35}

sin x = 11 6 3 35 \sin x =\sqrt\frac{11-6\sqrt3}{35}

Solve for cos y \cos y and cos x \cos x

cos x = ( 3 3 ) sin y \cos x=(3-\sqrt3)\sin y and cos y = ( 3 + 3 ) sin x \cos y = (3+\sqrt3)\sin x

cos y = ( 3 + 3 ) 11 6 3 35 \cos y = ( 3+\sqrt3)\sqrt\frac{11-6\sqrt3}{35}

cos x = ( 3 3 ) 11 + 6 3 35 \cos x = ( 3-\sqrt3)\sqrt\frac{11+6\sqrt3}{35}

These reduce to

cos y = 6 ( 4 3 ) 35 \cos y = \sqrt\frac{6(4-\sqrt3)}{35}

cos x = 6 ( 4 + 3 ) 35 \cos x = \sqrt\frac{6(4+\sqrt3)}{35} .

tan x tan y + tan y tan x = p q \frac{\tan x}{\tan y} + \frac{\tan y}{\tan x}=\frac{p}{q}

Let tan x tan y = z \frac{\tan x}{\tan y}=z solve for z z

z = tan x tan y = sin x cos y cos x sin y = 11 6 3 35 6 ( 4 3 ) 35 11 + 6 3 35 6 ( 4 + 3 ) 35 = 11 6 3 11 + 6 3 4 3 4 + 3 = 7519 4340 3 169 z= \frac{\tan x}{\tan y} = \frac{\sin x\cos y}{\cos x\sin y}=\frac{\sqrt\frac{11-6\sqrt3}{35} \sqrt\frac{6(4-\sqrt3)}{35}}{ \sqrt\frac{11+6\sqrt3}{35}\sqrt\frac{6(4+\sqrt3)}{35}}=\sqrt{\frac{11-6\sqrt3}{11+6\sqrt3}\cdot \frac{4-\sqrt3}{4+\sqrt3}}=\sqrt\frac{7519-4340\sqrt3}{169} z = 62 35 3 13 z=\frac{62-35\sqrt3}{13}

z + 1 z = p q z+\frac{1}{z}=\frac{p}{q}

p q = 62 35 3 13 + 13 62 35 3 = ( 62 35 3 ) 2 + 1 3 2 13 ( 62 35 3 ) = 7688 4340 3 13 ( 62 35 3 ) = 124 ( 62 35 3 ) 13 ( 62 35 3 ) = 124 13 \frac{p}{q}=\frac{62-35\sqrt3}{13}+\frac{13}{62-35\sqrt3}=\frac{(62-35\sqrt3)^2+13^2}{13(62-35\sqrt3)}=\frac{7688-4340\sqrt3}{13(62-35\sqrt3)} =\frac{124(62-35\sqrt3)}{13(62-35\sqrt3)}=\frac{124}{13}

p + q = 124 + 13 = 137 p+q=124+13=\boxed{137}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...