Symmetry

Algebra Level 5

{ x 3 + 1 x y 2 y 2 = 0 y 3 + 1 y x 2 x 2 = 0 \large{\begin{cases} x^{3}+1-xy^{2}-y^{2} =0 \\ y^{3}+1-yx^{2}-x^{2} =0 \end{cases}}

Find the number of pairs of real solutions ( x , y ) (x,y) that satisfy the system of equations above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( x 3 + 1 x y 2 y 2 ) ( y 3 + 1 y x 2 x 2 ) = 0 x 3 y 3 x y 2 + y x 2 y 2 + x 2 = 0 (x^3+1-xy^2-y^2)-(y^3+1-yx^2-x^2)=0\\x^3-y^3-xy^2+yx^2-y^2+x^2=0 Factorizing,we get ( x y ) ( x + y ) ( x + y + 1 ) = 0 (x-y)(x+y)(x+y+1)=0 .Now we have 3 cases: Case 1: x = y ( y ) 3 + 1 ( y ) ( y 2 ) y 2 = 0 y 2 = 1 y = 1 or y = 1 \text{Case 1:} x=y\\ \implies (y)^3+1-(y)(y^2)-y^2=0\\ \implies y^2=1\implies y=1 \; \text{or}\; y=-1 y = 1 y=1 gives ( x , y ) = ( 1 , 1 ) (x,y)=(1,1) while y = 1 y=-1 gives ( x , y ) = ( 1 , 1 ) (x,y)=(-1,-1) Case 2: x = y ( y ) 3 + 1 ( y ) y 2 y 2 = 0 y 2 = 1 y = 1 or y = 1 \text{Case 2:} x=-y\\ \implies (-y)^3+1-(-y)y^2-y^2=0\\ \implies y^2=1\implies y=1\;\text{or}\; y=-1 y = 1 y=1 gives ( x , y ) = ( 1 , 1 ) (x,y)=(-1,1) while y = 1 y=-1 gives ( x , y ) = ( 1 , 1 ) (x,y)=(1,-1) Case 3: x = 1 y ( 1 y ) 3 + 1 ( 1 y ) y 2 y 2 = 0 3 y 2 3 y = 0 3 y ( y + 1 ) = 0 \text{Case 3:} x=-1-y\\ \implies (-1-y)^3+1-(-1-y)y^2-y^2=0\\ \implies -3y^2-3y=0\implies -3y(y+1)=0 The case y = 0 y=0 gives ( x , y ) = ( 1 , 0 ) (x,y)=(-1,0) while the case y = 1 y=-1 gives ( x , y ) = ( 0 , 1 ) (x,y)=(0,-1) .

All the 6 pairs we have found satisfy both equations.Hence the answer is 6 \boxed{6} .

Moderator note:

Usually when the equations are symmetric, we are tempted to make x = y x = y . However, this is just one of the possibilities. What you should do, is to take the difference and factor out the ( x y ) (x-y) term as demonstrated above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...