Inspect polynomial

Algebra Level 4

P ( x ) = x 3 2007 x + 2002 P(x) = x^{3}-2007x+2002

Given that r r , s s and t t are all real roots of the above polynomial, find r 1 r + 1 + s 1 s + 1 + t 1 t + 1 \dfrac{r-1}{r+1}+\dfrac{s-1}{s+1}+\dfrac{t-1}{t+1} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

r 1 r + 1 + s 1 s + 1 + t 1 t + 1 = 1 + 1 + 1 2 ( 1 r + 1 + 1 s + 1 + 1 t + 1 ) = 3 2 ( ( s + 1 ) ( t + 1 ) + ( r + 1 ) ( t + 1 ) + ( s + 1 ) ( r + 1 ) ( r + 1 ) ( s + 1 ) ( t + 1 ) ) = 3 2 ( ( s t + s r + r t ) + 2 ( r + s + t ) + 3 r s t + ( r s + s t + r t ) + ( r + s + t ) + 1 ) \frac{r-1}{r+1}+\frac{s-1}{s+1}+\frac{t-1}{t+1}\\=1+1+1-2\left(\frac{1}{r+1}+\frac{1}{s+1}+\frac{1}{t+1}\right)\\=3-2\left(\frac{(s+1)(t+1)+(r+1)(t+1)+(s+1)(r+1)}{(r+1)(s+1)(t+1)}\right)\\=3-2\left(\frac{(st+sr+rt)+2(r+s+t)+3}{rst+(rs+st+rt)+(r+s+t)+1}\right) By vieta's formula - higher degrees ,we have that: { r + s + t = 0 r s + s t + r t = 2007 r s t = 2002 \begin{cases}r+s+t=0\\rs+st+rt=-2007\\rst=-2002\end{cases} Putting the respective values in the expression,we get: 3 2 ( 2007 + 2 ( 0 ) + 3 2002 2007 + 0 + 1 ) = 3 2 × ( 2004 ) 4008 = 3 + 4008 4008 = 3 1 = 2 3-2\left(\frac{-2007+2(0)+3}{-2002-2007+0+1}\right)\\=3-\frac{2\times (-2004)}{-4008}\\=3+\frac{4008}{-4008}=3-1=\boxed{2}

Moderator note:

What is the polynomial whose roots are of the form r 1 r + 1 \frac{ r-1}{r+1} ?

I did the same way

John Mack - 5 years, 5 months ago

4008 x 3 8016 x 2 + 4056 x + 5 = 0 4008x^{3} - 8016x^{2} + 4056x + 5 = 0 .

Aditya Sky - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...