P ( x ) = x 3 − 2 0 0 7 x + 2 0 0 2
Given that r , s and t are all real roots of the above polynomial, find r + 1 r − 1 + s + 1 s − 1 + t + 1 t − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What is the polynomial whose roots are of the form r + 1 r − 1 ?
I did the same way
4 0 0 8 x 3 − 8 0 1 6 x 2 + 4 0 5 6 x + 5 = 0 .
Problem Loading...
Note Loading...
Set Loading...
r + 1 r − 1 + s + 1 s − 1 + t + 1 t − 1 = 1 + 1 + 1 − 2 ( r + 1 1 + s + 1 1 + t + 1 1 ) = 3 − 2 ( ( r + 1 ) ( s + 1 ) ( t + 1 ) ( s + 1 ) ( t + 1 ) + ( r + 1 ) ( t + 1 ) + ( s + 1 ) ( r + 1 ) ) = 3 − 2 ( r s t + ( r s + s t + r t ) + ( r + s + t ) + 1 ( s t + s r + r t ) + 2 ( r + s + t ) + 3 ) By vieta's formula - higher degrees ,we have that: ⎩ ⎪ ⎨ ⎪ ⎧ r + s + t = 0 r s + s t + r t = − 2 0 0 7 r s t = − 2 0 0 2 Putting the respective values in the expression,we get: 3 − 2 ( − 2 0 0 2 − 2 0 0 7 + 0 + 1 − 2 0 0 7 + 2 ( 0 ) + 3 ) = 3 − − 4 0 0 8 2 × ( − 2 0 0 4 ) = 3 + − 4 0 0 8 4 0 0 8 = 3 − 1 = 2