Division

Algebra Level 5

( n = 1 99 10 + n ) ÷ ( n = 1 99 10 n ) {\displaystyle \left(\sum _{n=1}^{99}\sqrt{10+\sqrt{n}} \right)} \div { \displaystyle \left(\sum _{n=1}^{99}\sqrt{10-\sqrt{n}}\right) }

If the expression above is equal to a + b c a+b\sqrt{c} for integers a , b , c a,b,c with c c square-free, find a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Jan 10, 2016

Let A = ( n = 1 99 10 + n ) A= {\displaystyle \left(\sum _{n=1}^{99}\sqrt{10+\sqrt{n}} \right)}

B = ( n = 1 99 10 n ) B= { \displaystyle \left(\sum _{n=1}^{99}\sqrt{10-\sqrt{n}}\right) }

We have:

A + B = i = 1 99 ( 10 + 100 i + 10 100 i ) = i = 1 99 ( 10 + 100 i + 10 100 i ) 2 = i = 1 99 20 + 2 i = 2 A \displaystyle A+B=\sum_{i=1}^{99}\left(\sqrt{10+\sqrt{100-i}}+\sqrt{10-\sqrt{100-i}}\right)\\ \qquad\;\;\displaystyle=\sum_{i=1}^{99}\sqrt{\left(\sqrt{10+\sqrt{100-i}}+\sqrt{10-\sqrt{100-i}}\right)^2}\\ \qquad\;\;\displaystyle =\sum_{i=1}^{99}\sqrt{20+2\sqrt{i}}=\sqrt{2}A

Thus, B = ( 2 1 ) A B=(\sqrt{2}-1)A or A B = 1 2 1 = 2 + 1 \dfrac{A}{B}=\dfrac{1}{\sqrt{2}-1}=\sqrt{2}+1

Moderator note:

What makes you think of showing A + B = 2 A A + B = \sqrt{2} A ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...