Would you believe it's from NMTC 2K15

Algebra Level 2

3 3 + 1 1 + 3 3 + 1 + 1 = ? \frac {\sqrt{3}}{\sqrt{\sqrt{3}+1}-1} + \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1} = \ ?

None of the above 3 \sqrt{3} 2 3 2\sqrt{3} 3 2 \frac{\sqrt{3}}{2} 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jaydee Lucero
Sep 2, 2015

Let a = 3 + 1 a=\sqrt{3}+1 . Then 3 3 + 1 1 + 3 3 + 1 + 1 = a 1 a 1 + a 1 a + 1 = ( a 1 ) ( a + 1 ) a 1 + ( a 1 ) ( a + 1 ) a + 1 = ( a + 1 ) + ( a 1 ) = 2 a = 2 3 + 1 \begin{aligned} \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}+\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1} &= \frac{a-1}{\sqrt{a}-1}+\frac{a-1}{\sqrt{a}+1} \\ \\ &= \frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}-1}+\frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}+1} \\ &= (\sqrt{a}+1)+(\sqrt{a}-1) \\ &= 2 \sqrt{a} \\ &= 2\sqrt{\sqrt{3}+1}\end{aligned} The given values in the choices are not equal to this value, hence none of the choices .

3 3 + 1 1 + 3 3 + 1 + 1 = 3 ( 3 + 1 + 1 ) + 3 ( 3 + 1 1 ) ( 3 + 1 1 ) ( 3 + 1 + 1 ) = 2 3 ( 3 + 1 ) 3 + 1 1 = 2 3 + 1 \begin{aligned} \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1} + \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1} & = \frac{\sqrt{3}(\sqrt{\sqrt{3}+1}+1) + \sqrt{3}(\sqrt{\sqrt{3}+1}-1)}{(\sqrt{\sqrt{3}+1}-1)(\sqrt{\sqrt{3}+1}+1)} \\ & = \frac{2\sqrt{3}(\sqrt{\sqrt{3}+1})}{\sqrt{3}+1 -1} \\ & = 2 \sqrt{\sqrt{3}+1} \end{aligned}

Therefore, the answer is: None of the above \boxed{\text{None of the above}}

Ashish Bisht
Aug 28, 2015

rationalize the fractions after taking the LCM .. the problem will get simplified to only numerator (the portion shown in the denominator)....hence none of these

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...