Would you dare to differentiate this?

Calculus Level 3

If y = 1 1 + x b a + x c a + 1 1 + x a b + x c b + 1 1 + x b c + x a c y =\dfrac { 1 }{ 1+{ x }^{ b-a }+{ x }^{ c-a } } + \dfrac { 1 }{ 1+{ x }^{ a-b }+{ x }^{ c-b } } + \dfrac { 1 }{ 1+{ x }^{ b-c }+{ x }^{ a-c } } , find d y d x \dfrac{dy}{dx} .

x a + b + c { x }^{ a+b+c } 0 x x 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 22, 2016

y = cyc 1 1 + x b a + x c a y= \displaystyle\sum_{\text{cyc}}\dfrac{1}{1+x^{b-a}+x^{c-a}}

= cyc x a x a + x b + x c = cyc x a x a + x b + x c = 1 = \displaystyle\sum_{\text{cyc}}\dfrac{x^a}{x^a+x^{b}+x^{c}}=\dfrac{\displaystyle\sum_{\text{cyc}}x^a }{x^a+x^b+x^c}=1

d y d x = d ( 1 ) d x = 0 \therefore \dfrac{\mathrm{d}y}{\mathrm dx}= \dfrac{\mathrm{d}(1)}{\mathrm dx}=\boxed 0

Aman Dubey
Jul 22, 2016

Rearrange it so that we get y = 1 y = 1 (Do it !) now you know.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...