Would you use Ferrari-Cardano formula?

Algebra Level 5

It can be proved that the polynomial function f ( x ) = x 4 6 x 3 + 11 x 2 6 x 2020 f(x)=x^4-6x^3+11x^2-6x-2020 has two distinct real roots x 1 x_1 and x 2 x_2 and two distinct complex conjugate roots x 3 x_3 and x 4 . x_4. Find the number ( ( x 1 x 2 2 ) 2 + ( x 3 x 4 2 ) 2 ) 2 \left (\left(\frac{x_1-x_2}{2}\right)^2+\left(\frac{|x_3-x_4|}{2}\right)^2\right )^2


The answer is 8084.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 16, 2020

x 4 6 x 3 + 11 x 2 6 x 2020 = 0 x 4 6 x 3 + 11 x 2 6 x + 1 = 2021 ( x 2 3 x + 1 ) 2 = 2021 x 2 3 x + 1 = ± 2021 \begin{aligned} x^4 - 6x^3 + 11x^2 - 6x - 2020 & = 0 \\ x^4 - 6x^3 + 11x^2 - 6x + 1 & = 2021 \\ (x^2 - 3x+1)^2 & = 2021 \\ \implies x^2 - 3x + 1 & = \pm \sqrt{2021} \end{aligned}

{ x 2 3 x + 1 2021 = 0 x = 3 ± 9 4 + 4 2021 2 = 3 ± 5 + 4 2021 2 = x 1 , x 2 real roots x 2 3 x + 1 + 2021 = 0 x = 3 ± 9 4 4 2021 2 = 3 ± i 4 2021 5 2 = x 3 , x 4 complex roots \implies \begin{cases} x^2 - 3x + 1 - \sqrt{2021} = 0 & \implies x = \frac {3 \pm \sqrt{9-4 + 4\sqrt{2021}}}2 = \frac {3 \pm \sqrt{5+4\sqrt{2021}}}2 = x_1, x_2 & \small \blue{\text{real roots}} \\ x^2 - 3x + 1 + \sqrt{2021} = 0 & \implies x = \frac {3 \pm \sqrt{9-4 - 4\sqrt{2021}}}2 = \frac {3 \pm i\sqrt{4\sqrt{2021}-5}}2 = x_3, x_4 & \small \red{\text{complex roots}} \end{cases}

( ( x 1 x 2 2 ) 2 + ( x 3 x 4 2 ) 2 ) 2 = ( 5 + 4 2021 4 + 4 2021 5 4 ) 2 = 8084 \implies \left(\left(\frac {x_1-x_2}2\right)^2 + \left(\frac {|x_3-x_4|}2\right)^2\right)^2 = \left(\frac {5+4\sqrt{2021}}4 + \frac {4\sqrt{2021}-5}4 \right)^2 = \boxed{8084}

Arturo Presa
Dec 16, 2020

We are going to make c = 2020 c=2020 . Then the polynomial f ( x ) f(x) can be represented as f ( x ) = x 4 6 x 3 + 11 x 2 6 x c f(x)=x^4-6x^3+11x^2-6x-c
Now we can make x = X + 3 2 . x=X+\frac{3}{2}. Then f ( X + 3 2 ) = ( X + 3 2 ) 4 6 ( X + 3 2 ) 3 + 11 ( X + 3 2 ) 2 6 ( X + 3 2 ) c = X 4 5 2 X 2 + 9 16 c . f(X+\frac{3}{2})=(X+\frac{3}{2})^4-6(X+\frac{3}{2})^3+11(X+\frac{3}{2})^2-6(X+\frac{3}{2})-c =X^4-\frac{5}{2}X^2+\frac{9}{16}-c. Let us solve the equation X 4 5 2 X 2 + 9 16 c = 0. X^4-\frac{5}{2}X^2+\frac{9}{16}-c=0. The solutions of this biquadratic equations are: 1 + c 5 4 , 1 + c 5 4 , i 1 + c + 5 4 , i 1 + c + 5 4 . \sqrt{\sqrt{1+c}-\frac{5}{4}}, -\sqrt{\sqrt{1+c}-\frac{5}{4}}, i \sqrt{\sqrt{1+c}+\frac{5}{4}}, -i \sqrt{\sqrt{1+c}+\frac{5}{4}}. Then the roots of the polynomial f ( x ) f(x) are x 1 = 3 2 + 1 + c 5 4 , x 2 = 3 2 1 + c 5 4 , x 3 = 3 2 + i 1 + c + 5 4 , x 4 = 3 2 i 1 + c + 5 4 . x_1=\frac{3}{2}+\sqrt{\sqrt{1+c}-\frac{5}{4}}, x_2=\frac{3}{2}-\sqrt{\sqrt{1+c}-\frac{5}{4}}, x_3= \frac{3}{2}+i \sqrt{\sqrt{1+c}+\frac{5}{4}}, x_4=\frac{3}{2}-i \sqrt{\sqrt{1+c}+\frac{5}{4}}. Therefore, ( ( x 1 x 2 2 ) 2 + ( x 3 x 4 2 ) 2 ) 2 = ( 1 + c 5 4 + 1 + c + 5 4 ) 2 = ( 2 1 + c ) 2 = 4 ( 1 + c ) = 8084 . ((\frac{x_1-x_2}{2})^2 +(\frac{|x_3-x_4|}{2})^2)^2=(\sqrt{1+c}-\frac{5}{4}+\sqrt{1+c}+\frac{5}{4})^2=(2\sqrt{1+c})^2=4(1+c)=\boxed{8084}.

Chris Lewis
Dec 17, 2020

We might recognise the coefficients of the quartic - it can be rewritten as f ( x ) = x ( x 1 ) ( x 2 ) ( x 3 ) M f(x)=x(x-1)(x-2)(x-3)-M

where M = 2020 M=2020 . If we replace x x with x + k x+k for some constant k k , the quantity we're asked to find will not change (it's invariant under translations). Noting that x ( x 1 ) ( x 2 ) ( x 3 ) x(x-1)(x-2)(x-3) is symmetric about x = 3 2 x=\frac32 suggests putting k = 3 2 k=\frac32 ; so let g ( x ) = f ( x + 3 2 ) = ( x + 3 2 ) ( x + 1 2 ) ( x 1 2 ) ( x 3 2 ) M g(x)=f\left(x+\frac32\right)=\left(x+\frac32\right)\left(x+\frac12\right)\left(x-\frac12\right)\left(x-\frac32\right)-M

This becomes g ( x ) = ( x 2 9 4 ) ( x 2 1 4 ) M = x 4 5 2 x 2 + 9 16 M g(x)=\left(x^2-\frac94\right)\left(x^2-\frac14\right)-M=x^4-\frac52 x^2+\frac{9}{16}-M

We'll factor this as two quadratics; one with roots x 1 , x 2 x_1,x_2 and one with roots x 3 , x 4 x_3,x_4 . Note that g ( x ) g(x) contains no odd powers of x x ; the factorisation will be of the form 1 16 ( x 2 p ) ( x 2 q ) \frac{1}{16}\left(x^2-p\right)\left(x^2-q\right) , where p + q = 5 2 p+q=\frac52 and p q = 9 16 M pq=\frac{9}{16}-M , and without loss of generality p > 0 > q p>0>q .

The roots are, of course, x 1 , 2 = ± p x_{1,2}=\pm \sqrt{p} and x 3 , 4 = ± q x_{3,4}=\pm \sqrt{q} ; so ( ( x 1 x 2 2 ) 2 + ( x 3 x 4 2 ) 2 ) 2 = ( p q ) 2 = ( p + q ) 2 4 p q = 25 4 9 4 + 4 M = 8084 \begin{aligned} \left(\left(\frac{x_1-x_2}{2}\right)^2+\left(\frac{\left|x_3-x_4\right|}{2}\right)^2\right)^2 &= \left(p-q\right)^2 \\ &=(p+q)^2-4pq \\ &=\frac{25}{4}-\frac{9}{4}+4M \\ &=\boxed{8084} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...