As easy as pie

Calculus Level 2

A = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + B = 2 2 2 × 2 + 2 2 × 2 + 2 + 2 2 × C = 4 4 3 + 4 5 4 7 + 4 9 D = 3 + 4 2 × 3 × 4 4 4 × 5 × 6 + 4 6 × 7 × 8 4 8 × 9 × 10 + \large \begin{aligned} A&=&\frac{4}{1+\frac{1^2}{3+\frac{2^2}{5+\frac{3^2}{7+\frac{4^2}{9+\cdots}}}}} \\ B&=&\frac{2}{\frac{\sqrt{2}}{2}\times\frac{\sqrt{2+\sqrt{2}}}{2}\times\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\times\cdots} \\ C&=&\ 4-\dfrac{4}{3}+\dfrac{4}{5}-\dfrac{4}{7}+\dfrac{4}{9}-\cdots\\ D&=&\ 3+\dfrac{4}{2\times3\times4}-\dfrac{4}{4\times5\times6}+\dfrac{4}{6\times7\times8}-\dfrac{4}{8\times9\times10}+\cdots\end{aligned}

Which option/s is/are equal to π \pi ?

All of these choices B A C D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 10, 2018

A = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + = π A = \frac 4{1+\frac {1^2}{3+\frac {2^2}{5+\frac {3^2}{7+\frac {4^2}{9+\ddots}}}}} = \boxed \pi . See reference (I can't prove this.)


From cos x = 2 cos 2 x 2 1 \cos x = 2\cos^2 \frac x2 -1 cos x 2 = 1 + cos x 2 \implies \cos \frac x2 = \sqrt{\frac {1+\cos x}2} cos x 4 = 1 + cos x 2 2 = 1 2 + 1 2 1 + cos x 2 \implies \cos \frac x4 = \sqrt{\frac {1+\cos \frac x2}2} = \sqrt{\frac 12 + \frac 12 \sqrt{\frac {1+\cos x}2}} cos x 8 = 1 2 + 1 2 1 2 + 1 2 1 + cos x 2 \implies \cos \frac x8 = \sqrt{\frac 12 + \frac 12 \sqrt{\frac 12 + \frac 12 \sqrt{\frac {1+\cos x}2}}} , \cdots

For x = π 4 x = \frac \pi 4 , cos π 4 = 2 2 \cos \frac \pi 4 = \frac {\sqrt 2}2 , cos π 8 = 2 + 2 2 \cos \frac \pi 8 = \frac {\sqrt {2+\sqrt 2}}2 , cos π 16 = 2 + 2 + 2 2 \cos \frac \pi{16} = \frac {\sqrt {2+\sqrt{2+\sqrt 2}}}2 , cos π 32 = 2 + 2 + 2 + 2 2 \cos \frac \pi{32} = \frac {\sqrt {2+\sqrt{2+\sqrt {2+\sqrt 2}}}}2 , \cdots

Therefore,

2 B = 2 2 × 2 + 2 2 × 2 + 2 + 2 2 × = cos π 4 cos π 8 cos π 16 cos π 32 = lim n k = 2 n cos π 2 k = lim n k = 2 n 1 cos π 2 k × sin π 2 n cos π 2 n sin π 2 n = lim n k = 2 n 1 cos π 2 k × sin π 2 n 1 2 sin π 2 n = lim n k = 2 n 2 cos π 2 k × sin π 2 n 1 cos π 2 n 1 2 sin π 2 n = lim n k = 2 n 2 cos π 2 k × sin π 2 n 2 4 sin π 2 n = lim n sin π 2 2 n 1 sin π 2 n = lim n 2 2 n sin π 2 n B = lim n 2 n sin π 2 n = lim n π sin π 2 n π 2 n = π \begin{aligned} \frac 2B & = \frac {\sqrt 2}2 \times \frac {\sqrt{2+\sqrt 2}}2 \times \frac {\sqrt{2+\sqrt {2+\sqrt 2}}}2 \times \cdots \\ & = \cos \frac \pi 4 \cos \frac \pi 8 \cos \frac \pi{16} \cos \frac \pi{32} \cdots \\ & = \lim_{n \to \infty} \prod_{k=2}^n \cos \frac \pi{2^k} \\ & = \lim_{n \to \infty} \prod_{k=2}^{\color{#D61F06}n-1} \cos \frac \pi{2^k} \times \frac {\color{#3D99F6}\sin \frac \pi{2^n}\color{#D61F06}\cos \frac \pi{2^n}}{\color{#3D99F6}\sin \frac \pi{2^n}} = \lim_{n \to \infty} \prod_{k=2}^{n-1} \cos \frac \pi{2^k} \times \frac {\sin \frac \pi{2^{\color{#3D99F6}n-1}}}{{\color{#3D99F6}2}\sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \prod_{k=2}^{\color{#D61F06}n-2} \cos \frac \pi{2^k} \times \frac {\color{#3D99F6}\sin \frac \pi{2^{n-1}}\color{#D61F06}\cos \frac \pi{2^{n-1}}}{2\sin \frac \pi{2^n}} = \lim_{n \to \infty} \prod_{k=2}^{n-2} \cos \frac \pi{2^k} \times \frac {\sin \frac \pi{2^{\color{#3D99F6}n-2}}}{{\color{#3D99F6}4}\sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi2}{2^{n-1}\sin \frac \pi{2^n}} = \lim_{n \to \infty} \frac 2{2^n\sin \frac \pi{2^n}} \\ \implies B & = \lim_{n \to \infty} 2^n\sin \frac \pi{2^n} = \lim_{n \to \infty} \pi \cdot \frac {\sin \frac \pi{2^n}}{\frac \pi{2^n}} = \boxed \pi \end{aligned}


By Maclaurin series , we have:

tan 1 x = x x 3 3 + x 5 5 x 7 7 + x 9 9 Putting x = 1 π 4 = 1 1 3 + 1 5 1 7 + 1 9 = C 4 C = π \begin{aligned} \tan^{-1}x & = x - \frac {x^3}3 + \frac {x^5}5 - \frac {x^7}7 + \frac {x^9}9 - \cdots & \small \color{#3D99F6} \text{Putting }x = 1 \\ \implies \frac \pi 4 & = 1 - \frac 13 + \frac 15 - \frac 17 + \frac 19 - \cdots = \frac C4 \\ \implies C & = \boxed \pi \end{aligned}


D = 3 + 4 2 × 3 × 4 4 4 × 5 × 6 + 4 6 × 7 × 8 4 8 × 9 × 10 + By partial fraction decomposition = 3 + 2 2 4 3 + 2 4 2 4 + 4 5 2 6 + 2 6 4 7 + 2 8 2 8 + 4 9 2 10 + = 4 4 3 + 4 5 4 7 + 4 9 = C = π \begin{aligned} D & = 3 \color{#3D99F6}+ \frac 4{2 \times 3 \times 4} \color{#D61F06}- \frac 4{4 \times 5 \times 6} \color{#3D99F6}+ \frac 4{6 \times 7 \times 8} \color{#D61F06}- \frac 4{8 \times 9 \times 10} \color{#3D99F6}+ \cdots & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = 3 \color{#3D99F6}+ \frac 22 - \frac 43 + \frac 24 \color{#D61F06}- \frac 24 + \frac 45 - \frac 26 \color{#3D99F6}+ \frac 26 - \frac 47 + \frac 28 \color{#D61F06}- \frac 28 + \frac 49 - \frac 2{10} \color{#3D99F6}+ \cdots \\ & = 4 - \frac 43 + \frac 45 - \frac 47 + \frac 49 - \cdots = C = \boxed \pi \end{aligned}


Therefore, A = B = C = D = π A=B=C=D=\boxed \pi . Answer: All of these choices.

very interesting

Liu Yang - 5 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...