Wow!

Calculus Level 2

define a n { a }_{ n } recursively as a n 1 + a n 2 { a }_{ n-1 }+{ a }_{ n-2 } (the Fibonacci sequence)

the first few terms are :1,1,2,3....

find the lim n a n + 1 a n \lim _{ n\rightarrow \infty }{ \frac { { a }_{ n+1 } }{ { a }_{ n} } }

1 e τ \tau π \pi \infty 0 ϕ \phi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hamza A
Jan 22, 2016

lim n a n 1 a n F n = a n + 1 a n = a n + a n 1 a n = 1 + a n 1 a n = 1 + 1 F n 1 F n ϕ = 1 + 1 F n 1 1 1 ϕ , b y t h e d e f i n i t i o n o f ϕ w e h a v e ϕ = 1 + 1 ϕ F n ϕ = 1 F n 1 1 ϕ , t h e n w e a d d t h e f r a c t i o n s = F n 1 + ϕ F n 1 ϕ = 1 ϕ 1 + ϕ F n 1 1 ϕ F n 1 ϕ ( 1 ϕ ) n 1 F 1 ϕ \lim _{ n\rightarrow \infty }{ \frac { { a }_{ n-1 } }{ { a }_{ n } } } \\ \\ { F }_{ n }=\frac { { a }_{ n+1 } }{ { a }_{ n } } =\frac { { a }_{ n }+{ a }_{ n-1 } }{ { a }_{ n } } \\ \\ =1+\frac { { a }_{ n-1 } }{ { a }_{ n } } \\ =1+\frac { 1 }{ { F }_{ n-1 } } \\ \\ \left| { F }_{ n }-\phi \right| =\left| 1+\frac { 1 }{ { F }_{ n-1 } } -1-\frac { 1 }{ \phi } \right| ,\quad by\quad the\quad definition\quad of\quad \phi \quad we\quad have\quad \phi =1+\frac { 1 }{ \phi } \\ \\ \\ \left| { F }_{ n }-\phi \right| =\left| \frac { 1 }{ { F }_{ n-1 } } -\frac { 1 }{ \phi } \right| ,then\quad we\quad add\quad the\quad fractions\\ \\ =\left| \frac { { F }_{ n-1 }+\phi }{ { F }_{ n-1 }\phi } \right| \\ \\ =\frac { 1 }{ \phi } \left| 1+\frac { \phi }{ { F }_{ n-1 } } \right| \\ \\ \le \frac { 1 }{ \phi } \left| { F }_{ n-1 }-\phi \right| \\ \\ \le (\frac { 1 }{ \phi } )^{ n-1 }\left| { F }_{ 1 }-\phi \right| \\

as n tends to , ( 1 ϕ ) n 1 \infty ,(\frac { 1 }{ \phi } )^{ n-1 } tends to 0 so F n { F }_{ n } tends to

ϕ \phi !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...