Wow, really many integrals!

Calculus Level 4

Find the coefficient of t n + 1 t^{n+1} in the expansion of . . . . . . n integrals ( d t ) n \displaystyle \underbrace{\int\int\int... ... \int \int}_\text{ n integrals } (dt)^n


You might like Oh Integrals ? How Many ?

1 ( n + 1 ) ! \dfrac{1}{(n+1)!} 1 n ! \dfrac{1}{n!} 0 n ! n + 1 \dfrac{n!}{n+1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rindell Mabunga
Oct 10, 2014

There are only n integrals, therefore the maximum degree of t t is n n

This question is super troll, lol. Just answered the sister question (which was for t n t^n ). Then I come back to brilliant later, thinking I actually didn't answer this problem, and choose the same answer I concluded last time. Haha.

L N - 6 years, 8 months ago

But it gone level 3!

Rindell Mabunga - 6 years, 8 months ago

Log in to reply

That's because 288 views, 205 attempts and only 61 solvers!

Aditya Raut - 6 years, 8 months ago
Ayush Verma
Oct 9, 2014

maximum power of 't' after n integrals of 1 will be n.

y = 1 & I r = . . . y d t r t i m e s I 1 = t + c 1 I 1 = 0.5 t 2 + c 1 t + c 2 . . . . . I n = n t h o r d e r p o l y n o m i a l m e a n s i t c o n t a i n n o t e r m h a v i n g t n + 1 y=1\quad \quad \& \quad { I }_{ r }\underbrace { =\iint { ...\int { y } } dt }_{ r-times } \\ \\ { I }_{ 1 }=t+{ c }_{ 1 }\quad \Rightarrow { I }_{ 1 }=0.5{ t }^{ 2 }+{ c }_{ 1 }t+{ c }_{ 2 }\\ \\ .....\\ \\ { I }_{ n }={ n }^{ th\quad }order\quad polynomial\\ \\ means\quad it\quad contain\quad no\quad term\quad having\quad { t }^{ n+1 }\\

if you take an integral of t^2 you should get 1/3(t^3).....taken an integral of that results in 1/3(1/4)t^4..... and so forth.... I either don't understand the question or the soulition is wrong.

Yuliya Skripchenko - 6 years, 8 months ago

Log in to reply

y = 1 & I r = . . . y d t r t i m e s I 1 = t + c 1 I 1 = 0.5 t 2 + c 1 t + c 2 . . . . . I n = n t h o r d e r p o l y n o m i a l m e a n s i t c o n t a i n n o t e r m h a v i n g t n + 1 y=1\quad \quad \& \quad { I }_{ r }\underbrace { =\iint { ...\int { y } } dt }_{ r-times } \\ \\ { I }_{ 1 }=t+{ c }_{ 1 }\quad \Rightarrow { I }_{ 1 }=0.5{ t }^{ 2 }+{ c }_{ 1 }t+{ c }_{ 2 }\\ \\ .....\\ \\ { I }_{ n }={ n }^{ th\quad }order\quad polynomial\\ \\ means\quad it\quad contain\quad no\quad term\quad having\quad { t }^{ n+1 }\\

Ayush Verma - 6 years, 8 months ago
Ramesh Goenka
Oct 9, 2014

one loop hole put n as 1 .. evaluate the integral .. comes out as t... while no coefficient for t^2 hence 0 .. !!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...