Wow series

Calculus Level 4

2 1 ! + 12 2 ! + 28 3 ! + 50 4 ! + = ? \dfrac{2}{1!}+\dfrac{12}{2!}+\dfrac{28}{3!}+\dfrac{50}{4!}+\ldots =\, ?

Give your answer to 3 decimal places.


The answer is 15.591.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 17, 2016

Nice question.. :-)
T = n = 1 3 n 2 + n 2 n ! \Large\mathfrak{T}=\displaystyle\sum_{n=1}^{\infty}\dfrac{3n^2+n-2}{n!} = n = 1 ( 3 ( n 2 ) ! ) + ( 4 ( n 1 ) ! ) ( 2 n ! ) \large=\displaystyle\sum_{n=1}^{\infty}(\dfrac{3}{(n-2)!})+(\dfrac{4}{(n-1)!})-(\dfrac{2}{n!}) = 3 ( e ) + 4 ( e ) 2 ( e 1 ) ( ) \Large =3(e)+4(e)-2(e-1)~~~~(\color{#302B94}{**}) = 2 + 5 e 15.591 \Large =2+5e\approx\boxed{\color{#007fff}{15.591}}


N O T E : ( 1 ) . Finding General term for numerator ( a n ) S = 2 + 12 + 28 + + a n S = 2 + 12 + 28 + + a n Subtracting we get : 0 = 2 + ( 4 + 10 + 16 n terms ) a n a n = 2 + 3 n 2 + n = 3 n 2 + n 2 ( 2 ) . ( ) Use expansion of e x at x=1 : e = 1 + n = 1 1 n ! \boxed{\color{#D61F06}{\large\mathcal{NOTE:}}\\\boxed{(1). \small{\text{Finding General term for numerator}(a_n)\\ \mathfrak{S}=2+12+28+\cdots+a_n~~~~~\\ \mathfrak{S}=~~~~~~~~2+12+28+\cdots+a_n \\ \text{Subtracting we get :}\\ 0=-2+\color{#20A900}{(4+10+16\cdots\text{n terms}})- a_n\\\Rightarrow a_n=-2+\color{#20A900}{3n^2+n}=3n^2+n-2}}\\\boxed{(2).(\color{#302B94}{**}) \text{Use expansion of } e^x \text{ at x=1}~:\\ e=1+\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n!} }}

Chew-Seong Cheong
Oct 14, 2019

n a n Δ Δ 2 1 2 10 2 12 6 16 3 28 6 22 4 50 \begin{array} {cccc} n & a_n & \Delta & \Delta^2 \\ \hline 1 & 2 \\ & & 10 \\ 2 & 12 & & 6 \\ & & 16 \\ 3 & 28 & & 6 \\ & & 22 \\ 4 & 50 \end{array}

We note that the second difference Δ 2 = 6 \Delta^2=6 of the sequence is a constant. Then the formula of { a n } \{a_n\} is of the form a n = a n 2 + b n + c a_n = an^2 + bn+c .

Solving { n = 1 : a + b + c = 2 n = 2 : 4 a + 2 b + c = 12 n = 3 : 9 a + 3 b + c = 28 \begin{cases} n=1: & a+b+c = 2 \\ n=2: & 4a+2b+c = 12 \\ n=3: & 9a+3b+c = 28 \end{cases} a n = 3 n 2 + n 2 \implies a_n = 3n^2 + n - 2 .

Therefore the sum is

S = n = 1 3 n 2 + n 2 n ! = n = 1 3 n 2 + n n ! n = 1 2 n ! = n = 0 3 ( n + 1 ) 2 + n + 1 ( n + 1 ) ! n = 0 2 n ! + 2 = n = 0 3 ( n + 1 ) + 1 n ! 2 e + 2 = n = 0 3 n n ! + n = 0 4 n ! 2 e + = 3 n = 1 n n ! + 4 e 2 e + 2 = 3 n = 1 1 ( n 1 ) ! + 4 e 2 e + 2 = 3 n = 0 1 n ! + 4 e 2 e + 2 = 3 e + 4 e 2 e + 2 = 5 e + 2 15.591 \begin{aligned} S & = \sum_{n=1}^\infty \frac {3n^2+n-2}{n!} \\ & = \sum_{n=1}^\infty \frac {3n^2+n}{n!} - \sum_{n=1}^\infty \frac 2{n!} \\ & = \sum_{n=\red 0}^\infty \frac {3(n+1)^2+n+1}{(n+1)!} - \sum_{n=\blue 0}^\infty \frac 2{n!} + \blue 2 \\ & = \sum_{n=\red 0}^\infty \frac {3(n+1)+1}{n!} - 2e + 2 \\ & = \sum_{n=\red 0}^\infty \frac {3n}{n!} + \sum_{n=\red 0}^\infty \frac 4{n!} - 2e + \\ & = 3\sum_{n=\blue 1}^\infty \frac n{n!} + 4e - 2e + 2 \\ & = 3\sum_{n=\blue 1}^\infty \frac 1{(n-1)!} + 4e - 2e + 2 \\ & = 3\sum_{n=\red 0}^\infty \frac 1{n!} + 4e - 2e + 2 \\ & = 3e + 4e - 2e + 2 = 5e + 2 \approx \boxed{15.591} \end{aligned}

in the 3rd last step how did you get around the problem of n = 0 3 ( n 1 ) ! \sum_{n=0}^{\infty}\frac{3}{(n-1)!} ?

Sarthak Sahoo - 1 year, 5 months ago

Log in to reply

I don't find any n = 0 3 ( n 1 ) ! \displaystyle \sum_{n=0}^\infty \frac 3{(n-1)!} .

Chew-Seong Cheong - 1 year, 5 months ago

in the third last step simply the summation

Sarthak Sahoo - 1 year, 5 months ago

Log in to reply

I have added two steps to explain.

Chew-Seong Cheong - 1 year, 5 months ago

Log in to reply

Thank you Sir

Sarthak Sahoo - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...