Wow. Such summation. Much variables. Very degrees.

Algebra Level pending

If the minimum value of c c that satisfy the inequality for all x 1 , x 2 , , x n 0 x_{1},x_{2},\dots,x_{n} \geq 0

1 i < j n x i x j ( x i 2 + x j 2 ) c ( 1 i n x i ) 4 \displaystyle \large \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq c \left(\sum\limits_{1 \leq i \leq n} x_{i}\right)^{4}

can be expressed as a b \displaystyle \frac{a}{b} for coprime integers a , b \large a,b . What is the value of a 3 + b 3 a^{3}+b^{3} ?

If c < 0 \displaystyle c <0 , then a < 0 \displaystyle a < 0 and b > 0 \displaystyle b > 0 .


  • This problem is not original.


The answer is 513.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Add all the remaining terms from 1 1 to n n in the bracket from LHS

1 i < j n x i x j ( x i 2 + x j 2 ) \displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}\left(x_{i}^{2}+x_{j}^{2}\right)

1 i < j n x i x j ( x 1 2 + x 2 2 + + x n 2 ) \leq \displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}\left(x_{1}^{2}+x_{2}^{2}+\dots+x_{n}^{2}\right)

= ( x 1 2 + x 2 2 + . . . + x n 2 ) 1 i < j n x i x j = (x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2})\displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}

Consider ( x 1 + x 2 + . . . + x n ) 2 = ( x 1 2 + x 2 2 + . . . + x n 2 ) + 2 1 i < j n x i x j \left(x_{1}+x_{2}+...+x_{n}\right)^{2} = (x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2}) + 2 \displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}

2 ( x 1 2 + x 2 2 + . . . + x n 2 ) × 2 1 i < j n x i x j \geq 2\sqrt{(x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2}) \times 2 \displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}} by AM-GM.

Square both sides we get

( x 1 + x 2 + . . . + x n ) 4 8 ( x 1 2 + x 2 2 + . . . + x n 2 ) 1 i < j n x i x j 8 1 i < j n x i x j ( x i 2 + x j 2 ) \displaystyle \left(x_{1}+x_{2}+...+x_{n}\right)^{4} \geq 8(x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2})\displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j} \geq 8\displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}\left(x_{i}^{2}+x_{j}^{2}\right)

We get

1 i < j n x i x j ( x i 2 + x j 2 ) 1 8 ( 1 i n x i ) 4 \displaystyle \sum\limits_{1 \leq i < j \leq n} x_{i}x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq \displaystyle \frac{1}{8} \left(\sum\limits_{1 \leq i \leq n} x_{i}\right)^{4}

Hence, c = 1 8 \displaystyle c = \boxed{\displaystyle \frac{1}{8}} ~~~

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...