This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We first change the order of summation and rearrange the expression by partial fractions n = 1 ∑ ∞ n ( 2 n + 1 ) 2 2 n ζ ( 2 n ) = n = 1 ∑ ∞ ( n 1 − 2 n + 1 2 ) k = 1 ∑ ∞ ( 2 k ) 2 n 1 = k = 1 ∑ ∞ n = 1 ∑ ∞ ⎝ ⎜ ⎜ ⎜ ⎛ n ( 4 k 2 1 ) n − 4 k 2 n + 1 ( 2 k 1 ) 2 n + 1 ⎠ ⎟ ⎟ ⎟ ⎞ Using the MacLaurin series for − ln ( 1 − x ) , we get k = 1 ∑ ∞ ⎝ ⎜ ⎜ ⎜ ⎛ n = 1 ∑ ∞ n ( 4 k 2 1 ) n − 4 k ⎝ ⎜ ⎜ ⎜ ⎛ n = 1 ∑ ∞ n ( 2 k 1 ) n − n = 1 ∑ ∞ 2 n ( 2 k 1 ) 2 n − 1 ( 2 k 1 ) 1 ⎠ ⎟ ⎟ ⎟ ⎞ ⎠ ⎟ ⎟ ⎟ ⎞ = k = 1 ∑ ∞ ( − ln ( 1 − 4 k 2 1 ) − 4 k ( − ln ( 1 − 2 k 1 ) + 2 1 ln ( 1 − ( 2 k 1 ) 2 ) − 2 k 1 ) ) = k = 1 ∑ ∞ ( − ( ln ( 2 k + 1 ) + ln ( 2 k − 1 ) − 2 ln ( 2 k ) ) − 4 k ( − ln ( 2 k − 1 ) + ln ( 2 k ) + 2 1 ( ln ( 2 k + 1 ) + ln ( 2 k − 1 ) − 2 ln ( 2 k ) ) ) + 2 ) = k = 1 ∑ ∞ ( 2 ln ( 2 k ) − ( ( 2 k + 1 ) ln ( 2 k + 1 ) − ( 2 k + 1 ) − ( ( 2 k − 1 ) ln ( 2 k − 1 ) − ( 2 k − 1 ) ) ) ) Notice that this is actually the definite integral of ln x , i.e. ∫ a b ln x d x = b ln b − b − ( a ln a − a ) . Substituting this in gives us k = 1 ∑ ∞ ( 2 ln ( 2 k ) − ∫ 2 k − 1 2 k + 1 ln t d t ) = n → ∞ lim ( 2 k = 1 ∑ n ln ( 2 k ) − ∫ 1 2 n + 1 ln t d t ) = n → ∞ lim ( 2 n ln 2 + 2 ln n ! − ( 2 n + 1 ) ln ( 2 n + 1 ) + ( 2 n + 1 ) − 1 ) = n → ∞ lim ln ( ( 2 n + 1 ) 2 n + 1 ( n ! ) 2 ( 2 e ) 2 n ) Since we are taking the limit as n → ∞ , we can apply Stirling's approximation for n ! , where n ! ∼ 2 π n ( e n ) n . This gives n → ∞ lim ln ⎝ ⎜ ⎛ ( 2 n + 1 ) 2 n + 1 ( 2 π n ( e n ) n ) 2 ( 2 e ) 2 n ⎠ ⎟ ⎞ = n → ∞ lim ln ( ( 2 n + 1 ) 2 n + 1 π ( 2 n ) 2 n + 1 ) = n → ∞ lim ln ⎝ ⎜ ⎜ ⎜ ⎛ ( 1 + 2 n 1 ) 2 n + 1 π ⎠ ⎟ ⎟ ⎟ ⎞ = ln π − n → ∞ lim ln ( ( 1 + 2 n 1 ) 2 n + 1 ) = ln π − n → ∞ lim ln ( ( 1 + 2 n 1 ) 2 n ) − ln ( ( 1 + 2 n 1 ) ) = ln π − ln e − 0 = ln π − 1