Writo's Arithmetic Progression

Calculus Level 3

If a 1 , a 2 , a 4001 a_1, a_2, \cdots a_{4001} are in Arithmetic Progression

and 1 a 1 a 2 + 1 a 2 a 3 + + 1 a 4000 a 4001 = 10 \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \cdots + \frac{1}{a_{4000} a_{4001}} = 10

and a 2 + a 4000 = 50 a_2 + a_{4000} = 50

Evaluate a 1 a 4001 | a_1 - a_{4001} |

Thanks to @Writo for this problem


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

U Z
Feb 5, 2015

1 d ( a 2 a 1 a 2 a 1 + a 3 a 2 a 3 a 2 + + a 4001 a 4000 a 4001 a 4000 ) = 10 \dfrac{1}{d}\left( \dfrac{a_{2} - a_{1}}{a_{2}a_{1}} + \dfrac{a_{3} - a_{2}}{a_{3}a_{2}} + \cdots + \dfrac{a_{4001} - a_{4000}}{a_{4001}a_{4000}}\right) = 10

= 1 d ( 1 a 1 1 a 2 + 1 a 2 1 a 3 + + 1 a 4000 1 a 4001 ) = 10 = \dfrac{1}{d}\left( \dfrac{1}{a_{1}} - \dfrac{1}{a_{2}} + \dfrac{1}{a_{2}} - \dfrac{1}{a_{3}} + \cdots + \dfrac{1}{a_{4000}} - \dfrac{1}{a_{4001}}\right) = 10

= 1 d ( 1 a 1 1 a 4001 ) = 10 = \dfrac{1}{d}\left( \dfrac{1}{a_{1}} - \dfrac{1}{a_{4001}}\right) = 10

= 1 d ( a 4001 a 1 a 1 a 4001 ) = 10 = \dfrac{1}{d}\left( \dfrac{a_{4001} - a_{1}}{a_{1}a_{4001}}\right) = 10

= 4000 a 1 a 4001 = 10 = \dfrac{4000}{a_{1}a_{4001}} = 10 ( a s a 4001 = a 1 + 4000 d as~a_{4001} = a_{1} + 4000d )

a 1 a 4001 = 400 a_{1}a_{4001} = 400

a 2 + a 4000 = 50 a_{2} + a_{4000} = 50

( a 1 + d ) + ( a 1 + 3999 d ) = 50 \implies (a_{1} + d) + (a_{1} + 3999d) = 50

a 1 + a 4001 = 50 \implies a_{1} + a_{4001} = 50

( a 1 a 4001 ) 2 = ( a 1 + a 4001 ) 2 4 a 1 a 4001 (a_{1} - a_{4001})^2 = (a_{1} + a_{4001})^2 - 4a_{1}a_{4001}

a 1 a 4001 = 30 |a_{1} - a_{4001}| = 30

Nice Solution. Thanks

Agnishom Chattopadhyay - 6 years, 4 months ago

Log in to reply

What was your way?

U Z - 6 years, 4 months ago

Log in to reply

The same! ....

Agnishom Chattopadhyay - 6 years, 4 months ago

This was a nice problem, but overrated in my opinion.

Prasun Biswas - 6 years, 4 months ago

good problem and good solution(same as I did).

mudit bansal - 6 years, 4 months ago

The answer is (+30) or (-30)

it must be positive

Andrea Virgillito - 4 years, 3 months ago

Every term 1 a n a n + 1 \frac{1}{a_{n}a_{n + 1}} can be written as 1 r ( 1 a n 1 a n + 1 ) \frac{1}{r} * (\frac{1}{a_{n}} - \frac{1}{a_{n+1}}) , where r r is the common difference of the progression. Thus, we can rewrite the sum as:

1 r ( 1 a 1 1 a 2 + 1 a 2 1 a 3 + + 1 a 4000 1 a 4001 ) = 10 \frac{1}{r}*(\frac{1}{a_{1}} - \frac{1}{a_{2}} + \frac{1}{a_{2}} - \frac{1}{a_{3}} + \ldots + \frac{1}{a_{4000}} - \frac{1}{a_{4001}}) = 10

It follows that: 1 a 1 1 a 4001 = 10 r \frac{1}{a_{1}} - \frac{1}{a_{4001}} = 10r

4000 r a 1 a 4001 = 10 r \frac{4000r}{a_{1}*a_{4001}} = 10r

a 1 ( a 1 + 4000 r ) = 400 a_{1}*(a_{1} + 4000r) = 400 (Equation I I )

Now, from the condition a 2 + a 4000 = 50 a_{2} + a_{4000} = 50 , we derive the following:

2 a 1 + 4000 r = 50 2a_{1} + 4000r = 50

4000 r = 50 2 a 1 4000r = 50 - 2a_{1} (Equation I I II )

Plugging the result of I I II back in I I , we get:

a 1 ( 50 a 1 ) = 400 a_{1}*(50 - a_{1}) = 400

a 1 2 50 a 1 + 400 = 0 a_{1}^{2} - 50a_{1} + 400 = 0

Solving for a 1 a_{1} yields: a 1 = 40 a_{1} = 40 or a 1 = 10 a_{1} = 10

If a 1 = 40 a_{1} = 40 , then 4000 r = 30 4000r = -30 and so a 4001 = 10 a_{4001} = 10

If a 1 = 10 a_{1} = 10 , then 4000 r = 30 4000r = 30 and so a 4001 = 40 a_{4001} = 40

In either case, a 1 a 4001 = 30 |a_{1} - a_{4001}| = 30 .

Carsten Meyer
Mar 13, 2019

Let N = 4000 N=4000 as a shorthand. We have an arithmetic progression a k = a 1 + ( k 1 ) d a_k=a_1+(k-1)d and need to calculate x : = a 1 a N + 1 = N d |x|:=|a_1-a_{N+1}|=N|d| . The first equation yields a telescope sum:

10 = k = 1 N 1 a k a k + 1 = k = 1 N 1 ( a 1 + ( k 1 ) d ) ( a 1 + k d ) = part. frac. k = 1 N 1 d a 1 + ( k 1 ) d 1 d a 1 + k d = 1 d k = 1 N 1 a k 1 d k = 2 N + 1 1 a k = 1 d a 1 1 d a N + 1 = 1 d a 1 1 a 1 + N d = N a 1 ( a 1 + N d ) N 10 = a 1 ( a 1 + N d ) \begin{aligned} 10&=\sum_{k=1}^{N}\frac{1}{a_ka_{k+1}}=\sum_{k=1}^{N}\frac{1}{(a_1+(k-1)d)(a_1+kd)}\underset{\text{part. frac.}}{=}\sum_{k=1}^{N}\frac{\frac{1}{d}}{a_1+(k-1)d}-\frac{\frac{1}{d}}{a_1+kd}\\ &=\frac{1}{d}\sum_{k=1}^N\frac{1}{a_k}-\frac{1}{d}\sum_{k=2}^{N+1}\frac{1}{a_k}=\frac{1}{da_1}-\frac{1}{da_{N+1}}=\frac{1}{da_1}-\frac{1}{a_1+Nd}=\frac{N}{a_1(a_1+Nd)}\\ \Rightarrow\quad\frac{N}{10}&=a_1(a_1+Nd) \end{aligned}

The second equation yields

50 = a 2 + a N = 2 a 1 + N d a 1 = 25 N d 2 \begin{aligned} 50&=a_2+a_{N}=2a_1+Nd\quad\Rightarrow\quad a_1=25-\frac{Nd}{2} \end{aligned}

Inserting the second in the first equation and using x = N d |x|=N|d| , we get

N 10 = ( 25 N d 2 ) ( 25 + N d 2 ) = 3. Binomi 625 x 2 4 x = 2500 2 N 5 = N = 4000 30 \begin{aligned} \frac{N}{10}&=\left(25-\frac{Nd}{2}\right)\left(25+\frac{Nd}{2}\right)\underset{\text{3. Binomi}}{=}625-\frac{x^2}{4}&\Rightarrow&&|x|=\sqrt{2500-\frac{2N}{5}}\underset{N=4000}{=}\fbox{30} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...