[x]

x = 1 + 1 2 2 + 1 3 2 + 1 4 2 + + 1 201 5 2 \large x=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{2015^2} What is x \lceil x \rceil ?


Note: \lceil \cdot \rceil denotes least integer greater than or equal to x x .

5 4 2 The series doesn't converge 3 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Tin Ping
Dec 31, 2017

x = 1 + k = 2 2015 1 k 2 < 1 + k = 2 2015 1 k 2 1 = 1 + k = 2 2015 1 ( k 1 ) ( k + 1 ) = 1 + k = 2 2015 1 2 ( 1 k 1 1 k + 1 ) = 1 + 1 2 ( 1 + 1 2 1 100 1 101 ) = 1.74 \begin{aligned} x&=1+\sum_{k=2}^{2015} \frac{1}{k^2} \\ &<1+\sum_{k=2}^{2015} \frac{1}{k^2-1} \\ &=1+ \sum_{k=2}^{2015} \frac{1}{(k-1)(k+1)} \\ &=1+ \sum_{k=2}^{2015} \frac{1}{2} (\frac{1}{k-1}-\frac{1}{k+1}) \\ &=1+\frac{1}{2}(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}) \\ &=1.74 \end{aligned} Hence, x < 1.74 x<1.74 and it is obvious that 1 < x 1<x . So x = 2 \lceil x \rceil=\large 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...