Cubing unities?

Geometry Level 4

S n = i = 1 n cot 1 ( i 2 + i + 1 ) { S }_{ n }=\sum _{ i=1 }^{ n }{ \cot ^{ -1 }{ \left( { i }^{ 2 }+i+1 \right) } }

Conside the summation above, S n S_n . If the value of S 100 { S }_{ 100 } can be written as cot 1 ( a b ) \cot ^{ -1 }{ \left( \frac { a }{ b } \right) } for coprime positive integers a a and b b with a > b a>b , find the value of 2 ( a + b ) 2(a+b) .


The answer is 202.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vighnesh Raut
May 4, 2015

First of all, cot 1 ( i 2 + i + 1 ) \cot ^{ -1 }{ \left( { i }^{ 2 }+i+1 \right) } can be written as tan 1 1 i 2 + i + 1 \tan ^{ -1 }{ \frac { 1 }{ { i }^{ 2 }+i+1 } } . So, S n = i = 1 n tan 1 1 i 2 + i + 1 = i = 1 n tan 1 1 i ( i + 1 ) + 1 = i = 1 n tan 1 ( i + 1 ) ( i ) i ( i + 1 ) + 1 = i = 1 n tan 1 ( i + 1 ) tan 1 i = tan 1 ( n + 1 ) tan 1 1 = tan 1 ( n n + 2 ) = cot 1 ( n + 2 n ) { S }_{ n }=\sum _{ i=1 }^{ n }{ \tan ^{ -1 }{ \frac { 1 }{ { i }^{ 2 }+i+1 } } } \\ =\sum _{ i=1 }^{ n }{ \tan ^{ -1 }{ \frac { 1 }{ { i }(i+1)+1 } } } \\ =\sum _{ i=1 }^{ n }{ \tan ^{ -1 }{ \frac { (i+1)-(i) }{ { i }(i+1)+1 } } } \\ =\sum _{ i=1 }^{ n }{ \tan ^{ -1 }{ (i+1) } -\tan ^{ -1 }{ i } } \\ =\tan ^{ -1 }{ (n+1) } -\tan ^{ -1 }{ 1 } \\ =\tan ^{ -1 }{ \left( \frac { n }{ n+2 } \right) } \\ =\cot ^{ -1 }{ \left( \frac { n+2 }{ n } \right) } Hence, S 100 = cot 1 ( 102 100 ) = cot 1 ( 51 50 ) S o , 2 ( a + b ) = 2 ( 101 ) = 202 { S }_{ 100 }=\cot ^{ -1 }{ \left( \frac { 102 }{ 100 } \right) } =\cot ^{ -1 }{ \left( \frac { 51 }{ 50 } \right) } \\ So,\quad 2*(a+b)=2(101)=202

Did the same.

Trishit Chandra - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...