x or y? y or z? x or z? x, y, z?

Algebra Level 3

{ x + y + z = 4 y + 3 y + z 7 = 3 y z y x = y \large {\begin{cases}x + y + z = 4y + 3 \\ y + z - 7 = 3y \\ z - y - x = y\end{cases}}

Given that x , y x,y and z z satisfy the system of equations above, find 2 x + 3 y + z 2x+3y +z .


The answer is 76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arpan Ray
Sep 28, 2016

1st equation

x + y + z = 4 y + 3 x + y + z = 4y + 3 [Shifting y y from L.H.S. to R.H.S.]

x + z = 4 y + 3 y x + z = 4y + 3 - y [Shifting z z from L.H.S to R.H.S. and subtracting y y from 4 y 4y ]

x = 3 y + 3 z x = 3y + 3 - z

3rd equation

z y x = y z - y - x = y [Putting 3 y + 3 z 3y + 3 - z in place of x x ]

z y ( 3 y + 3 z ) = y z - y - (3y + 3 - z) = y [Removing brackets]

z y 3 y 3 + z = y z - y - 3y - 3 + z = y [Solving L.H.S.]

2 z 4 y 3 = y 2z - 4y - 3 = y [Shifting 4 y -4y from L.H.S to R.H.S.]

2 z 3 = y + 4 y 2z - 3 = y + 4y

2 z 3 = 5 y 2z - 3 = 5y [Shifting 5 from R.H.S to L.H.S.]

2 z 3 5 \frac{2z - 3}{5} = y = y

2nd equation

y + z 7 = 3 y y + z - 7 = 3y [Putting 2 z 3 5 \frac{2z - 3}{5} in place of y y ]

2 z 3 5 \frac{2z - 3}{5} + z 7 = 3 ( + z - 7 = 3 ( 2 z 3 5 \frac{2z - 3}{5} ) ) [Multiplying in R.H.S. and adding in L.H.S.]

2 z 3 + 5 z 35 5 \frac{2z - 3 + 5z - 35}{5} = = ( 3 2 z ) ( 3 3 ) 5 \frac{(3*2z)-(3*3)}{5}

7 z 38 5 \frac{7z - 38}{5} = = 6 z 9 5 \frac{6z - 9}{5} [Removing 5 in denominator from both sides]

7 z 38 = 6 z 9 7z - 38 = 6z - 9 [Shifting 38 -38 and 6 z 6z ]

7 z 6 z = 9 + 38 7z - 6z = -9 + 38 [Solving L.H.S and R.H.S.]

z = 29 z = 29

Again 1st equation

x + y + z = 4 y + 3 x + y + z = 4y + 3 [Putting 2 z 3 5 \frac{2z - 3}{5} in place of y y ]

x + x + 2 z 3 5 \frac{2z - 3}{5} + z = 4 ( + z = 4 ( 2 z 3 5 \frac{2z - 3}{5} ) + 3 )+ 3 [Putting 29 in place of z]

x + x + 2 ( 29 ) 3 5 \frac{2(29) - 3}{5} + 29 = + 29 = ( 4 2 29 ) ( 4 3 ) 5 \frac{(4*2*29)-(4*3)}{5} + 3 + 3 [Solving it]

x + x + 58 3 5 \frac{58 - 3}{5} + 29 = + 29 = 232 12 5 \frac{232-12}{5} + 3 + 3

x + x + 55 5 \frac{55}{5} + 29 = + 29 = 220 5 \frac{220}{5} + 3 + 3

x + 11 + 29 = 44 + 3 x + 11 + 29 = 44 +3

x + 40 = 47 x + 40 = 47 [Shifting 40 from L.H.S. to R.H.S.]

x = 47 40 x = 47 - 40

x = 7 x = 7

Again 1st equation

x + y + z = 4 y + 3 x + y + z = 4y + 3 [Putting 7 in place of x x and 29 in place of z z ]

7 + y + 29 = 4 y + 3 7 + y + 29 = 4y + 3 [Solving it]

y + 36 = 4 y + 3 y + 36 = 4y + 3 [Shifting y y from L.H.S. to R.H.S. and 3 from R.H.S. to L.H.S.]

36 3 = 4 y y 36 - 3 = 4y - y

33 = 3 y 33 = 3y [Shifting 3 from R.H.S. to L.H.S.]

33 3 \frac{33}{3} = y = y

y = 11 y = 11

Thus, x = 7 ; y = 11 ; z = 29 x = 7; y = 11; z = 29

So, the value of 2 x + 3 y + z 2x + 3y + z is

= 2 ( 7 ) + 3 ( 11 ) + 29 2(7) + 3(11) + 29

= 14 + 33 + 29 14 + 33 + 29

= 76 76 = A n s Ans

{ x + y + z = 4 y + 3 . . . ( 1 ) y + z 7 = 3 y . . . ( 2 ) z y x = y . . . ( 3 ) {\begin{cases}x + y + z = 4y + 3 \ ...(1) \\ y + z - 7 = 3y \ ...(2) \\ z - y - x = y \ ...(3)\end{cases}}

( 1 ) + ( 3 ) (1)+(3)

2 z = 5 y + 3 . . . ( 4 ) \implies 2z=5y+3 \ ...(4)

Putting ( 4 ) (4) in ( 2 ) (2) gives:

y = 11 \implies y=11

Putting y y in ( 4 ) (4) gives:

z = 29 \implies z=29

Putting y y and z z in ( 3 ) (3) gives:

x = 7 \implies x=7

2 x + 3 y + z = ( 2 × 7 ) + ( 3 × 11 ) + 29 = 76 \implies 2x+3y+z=(2×7)+(3×11)+29=\boxed{76} .

Chew-Seong Cheong
Sep 30, 2016

{ x + y + z = 4 y + 3 x 3 y + z = 3 . . . ( 1 ) y + z 7 = 3 y 2 y + z = 7 . . . ( 2 ) z y x = y x + 2 y z = 0 . . . ( 3 ) \begin{cases} x + y + z = 4y + 3 & \implies x - 3y + z = 3 & ...(1) \\ y + z - 7 = 3y & \implies - 2y + z = 7 & ...(2) \\ z - y - x = y & \implies x + 2y - z = 0 & ...(3) \end{cases}

( 2 ) + ( 3 ) : x = 7 . . . ( 4 ) \begin{aligned} (2)+(3): \ \ x & = 7 & ...\color{#3D99F6}{(4)} \end{aligned}

( 1 ) + ( 3 ) : 2 x y = 3 y = 2 x 3 = 2 × 7 ( 4 ) 3 y = 11 . . . ( 5 ) \begin{aligned} (1)+(3): \ \ 2x - y & = 3 \\ \implies y & = 2x - 3 \\ & = 2 \times 7_{\color{#3D99F6}{(4)}} - 3 \\ \implies y & = 11 & ...\color{#D61F06}{(5)} \end{aligned}

( 1 ) + ( 2 ) + ( 3 ) : 2 x 3 y + z = 10 2 x 3 y + z + 6 y = 10 + 6 y 2 x + 3 y + z = 10 + 6 × 1 1 ( 5 ) 2 x + 3 y + z = 76 \begin{aligned} (1)+(2)+(3): \ \ 2x - 3y + z & = 10 \\ 2x - 3y + z + 6y & = 10 + 6y \\ 2x + 3y + z & = 10 + 6 \times 11_{\color{#D61F06}{(5)}} \\ \implies 2x + 3y + z & = \boxed{76} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...