X still unknown

Algebra Level 4

if : x 4 + x 2 y 2 + y 4 = 24 \text {if} : x^{4}+ x^{2}y^{2} + y^{4} = 24 x 2 x y + y 2 = 6 x^{2} - xy + y^{2} = 6 Find x 3 + y 3 = ? \text {Find} \left| x^{3} + y^{3} \right| =?

2 \sqrt {2} 2 2 2\sqrt {2} 6 3 6\sqrt {3} 4 0 1 3 \sqrt {3} 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ikkyu San
Aug 1, 2015

Let

x 4 + x 2 y 2 + y 4 = 24 ( 1 ) x 2 x y + y 2 = 6 ( 2 ) \begin{aligned}x^4+x^2y^2+y^4=&\ 24\Rightarrow(1)\\x^2-xy+y^2=&\ 6\Rightarrow(2)\end{aligned}

From Equation ( 1 ) (1) That is,

x 4 + x 2 y 2 + y 4 = 24 ( x 4 + 2 x 2 y 2 + y 4 ) x 2 y 2 = 24 ( x 2 + y 2 ) 2 ( x y ) 2 = 24 ( x 2 + y 2 x y ) ( x 2 + y 2 + x y ) = 24 6 ( x 2 + x y + y 2 ) = 24 x 2 + x y + y 2 = 4 ( 3 ) \begin{aligned}x^4+x^2y^2+y^4=&\ 24\\(x^4+2x^2y^2+y^4)-x^2y^2=&\ 24\\(x^2+y^2)^2-(xy)^2=&\ 24\\(x^2+y^2-xy)(x^2+y^2+xy)=&\ 24\\6(x^2+xy+y^2)=&\ 24\\x^2+xy+y^2=&\ 4\Rightarrow(3)\end{aligned}

Equation ( 2 ) (2) + + Equation ( 3 ) (3) That is,

2 x 2 + 2 y 2 = 10 x 2 + y 2 = 5 ( 4 ) \begin{aligned}2x^2+2y^2=&\ 10\\x^2+y^2=&\ 5\Rightarrow(4)\end{aligned}

Equation ( 2 ) (2) - Equation ( 3 ) (3) That is,

2 x y = 2 ( 5 ) \begin{aligned}-2xy=&\ 2\Rightarrow(5)\end{aligned}

Equation ( 4 ) (4) - Equation ( 5 ) (5) That is,

x 2 + 2 x y + y 2 = 3 ( x + y ) 2 = 3 x + y = ± 3 \begin{aligned}x^2+2xy+y^2=&\ 3\\(x+y)^2=&\ 3\\x+y=&\ \pm\sqrt3\end{aligned}

From x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) |x^3+y^3|=|(x+y)(x^2-xy+y^2)|

When x + y = 3 x+y=\sqrt3 the value of x 3 + y 3 |x^3+y^3| is 3 6 = 6 3 |\sqrt3\cdot6|=6\sqrt3

When x + y = 3 x+y=-\sqrt3 the value of x 3 + y 3 |x^3+y^3| is 3 6 = 6 3 |-\sqrt3\cdot6|=6\sqrt3

Hence, the value of x 3 + y 3 |x^3+y^3| is 6 3 \boxed{6\sqrt3}

Good solution.... I took x^2+y^2=6-xy and squared... Cancelled x^2.y^2... And put 24 from other equation... That gave xy=(-1)... And proceedes as your solution

Ambuj Kumar Pandit - 5 years, 10 months ago
Ankush Gogoi
Aug 1, 2015

How is it different from the solution of Ikkyu San in Latex posted before your solution???

Niranjan Khanderia - 5 years, 10 months ago

Simply another approach in detail. Same as Ambuj Kumar Pandit :-
( x 2 x y + y 2 ) 2 ( x 4 + x 2 y 2 + y 4 ) = 36 24 = 12. x y ( x 2 + y 2 ) + x 2 y 2 = 6.. x y = 6 x 2 x y + y 2 = 6 6 = 1 x + y = x 2 x y + y 2 + 3 x y = 6 3 = 3 x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) = 3 6 (x^2-xy+y^2)^2 -(x^4+x^2y^2+y^4)=36-24=12.\\ \implies~-xy(x^2+y^2)+x^2y^2=6..\\ \therefore~xy= - \dfrac 6{x^2-xy+y^2}=- \dfrac 6 6 =-1\\ \therefore~x+y={\large \sqrt{x^2-xy+y^2+3xy} }=\sqrt{6-3}=\sqrt3\\ |x^3+y^3|=(x+y)(x^2-xy+y^2)=\sqrt3 * 6

Curtis Clement
Aug 4, 2015

Using the Sophie-Germain Identities: x 4 + x 2 y 2 + y 4 = ( x 2 + x y + y 2 ) ( x 2 x y + y 2 ) 24 = 6 ( 6 + 2 x y ) \ x^4 +x^2 y^2 +y^4 = (x^2 +xy+y^2)(x^2 -xy+y^2) \Rightarrow\ 24 = 6(6+2xy) x y = 1 \therefore\ xy = -1 Now using the 2nd given equation: x 2 + y 2 = 6 + x y = 5 ( x + y ) 2 = 3 \ x^2 +y^2 = 6+xy = 5 \Rightarrow\ (x+y)^2 = 3 x + y = 3 \therefore\ x+y = \sqrt{3} Using the factor theorem we know that x + y \ x+y is a factor of x 3 + y 3 \ x^3 +y^3 which produces: x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) = + 6 3 \ |x^3 +y^3| = |(x+y)(x^2 -xy +y^2)| = \boxed{+6 \sqrt{3} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...