if : x 4 + x 2 y 2 + y 4 = 2 4 x 2 − x y + y 2 = 6 Find ∣ ∣ x 3 + y 3 ∣ ∣ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good solution.... I took x^2+y^2=6-xy and squared... Cancelled x^2.y^2... And put 24 from other equation... That gave xy=(-1)... And proceedes as your solution
How is it different from the solution of Ikkyu San in Latex posted before your solution???
Simply another approach in detail. Same as Ambuj Kumar Pandit :-
(
x
2
−
x
y
+
y
2
)
2
−
(
x
4
+
x
2
y
2
+
y
4
)
=
3
6
−
2
4
=
1
2
.
⟹
−
x
y
(
x
2
+
y
2
)
+
x
2
y
2
=
6
.
.
∴
x
y
=
−
x
2
−
x
y
+
y
2
6
=
−
6
6
=
−
1
∴
x
+
y
=
x
2
−
x
y
+
y
2
+
3
x
y
=
6
−
3
=
3
∣
x
3
+
y
3
∣
=
(
x
+
y
)
(
x
2
−
x
y
+
y
2
)
=
3
∗
6
Using the Sophie-Germain Identities: x 4 + x 2 y 2 + y 4 = ( x 2 + x y + y 2 ) ( x 2 − x y + y 2 ) ⇒ 2 4 = 6 ( 6 + 2 x y ) ∴ x y = − 1 Now using the 2nd given equation: x 2 + y 2 = 6 + x y = 5 ⇒ ( x + y ) 2 = 3 ∴ x + y = 3 Using the factor theorem we know that x + y is a factor of x 3 + y 3 which produces: ∣ x 3 + y 3 ∣ = ∣ ( x + y ) ( x 2 − x y + y 2 ) ∣ = + 6 3
Problem Loading...
Note Loading...
Set Loading...
Let
x 4 + x 2 y 2 + y 4 = x 2 − x y + y 2 = 2 4 ⇒ ( 1 ) 6 ⇒ ( 2 )
From Equation ( 1 ) That is,
x 4 + x 2 y 2 + y 4 = ( x 4 + 2 x 2 y 2 + y 4 ) − x 2 y 2 = ( x 2 + y 2 ) 2 − ( x y ) 2 = ( x 2 + y 2 − x y ) ( x 2 + y 2 + x y ) = 6 ( x 2 + x y + y 2 ) = x 2 + x y + y 2 = 2 4 2 4 2 4 2 4 2 4 4 ⇒ ( 3 )
Equation ( 2 ) + Equation ( 3 ) That is,
2 x 2 + 2 y 2 = x 2 + y 2 = 1 0 5 ⇒ ( 4 )
Equation ( 2 ) − Equation ( 3 ) That is,
− 2 x y = 2 ⇒ ( 5 )
Equation ( 4 ) − Equation ( 5 ) That is,
x 2 + 2 x y + y 2 = ( x + y ) 2 = x + y = 3 3 ± 3
From ∣ x 3 + y 3 ∣ = ∣ ( x + y ) ( x 2 − x y + y 2 ) ∣
When x + y = 3 the value of ∣ x 3 + y 3 ∣ is ∣ 3 ⋅ 6 ∣ = 6 3
When x + y = − 3 the value of ∣ x 3 + y 3 ∣ is ∣ − 3 ⋅ 6 ∣ = 6 3
Hence, the value of ∣ x 3 + y 3 ∣ is 6 3