X Y X \ Y

Algebra Level 2

( 1 + i ) ( x y i ) = i ( 14 + 7 i ) ( 2 + 13 i ) \large (1+i)(x-yi) = i(14+7i)-(2+13i)

Find x x and y y .

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit .

x = 4 , y = 5 x=-4, \ y=-5 x = 5 , y = 4 x=5, \ y=4 x = 2 , y = 4 x=-2, \ y=-4 x = 5 , y = 3 x=5, \ y=-3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( 1 + i ) ( x y i ) = i ( 14 + 7 i ) ( 2 + 13 i ) x y i + x i + y = 14 i 7 2 13 i ( x + y ) + ( x y ) i = 9 + i \begin{aligned} (1+i)(x-yi) & = i(14+7i) - (2+13i) \\ x-yi +xi + y & = 14i -7 - 2- 13i \\ (x+y) +(x-y)i & = -9 + i \end{aligned}

Equating the real and imaginary parts on both sides,

{ x + y = 9 . . . ( 1 ) x y = 1 . . . ( 2 ) \begin{cases} x + y = -9 & ...(1) \\ x-y = 1 & ...(2) \end{cases} ( 1 ) + ( 2 ) : 2 x = 8 x = 4 ( 1 ) : 4 + y = 9 y = 5 \implies (1)+(2): 2x = - 8 \implies x = -4 \implies (1): -4+y =-9 \implies y = -5 .

Therefore, the answer is x = 4 , y = 5 \boxed{x=-4, \ y=-5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...