x x , y y , and x x -ponents

Algebra Level 1

If 4 x 2 x + y \frac{4^{x}}{2^{x + y}} = 8 = 8 and 9 x + y 3 5 y \frac{9^{x + y}}{3^{5y}} = 243 = 243 , where x x and y y are real numbers, then what is the sum x + y x + y ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ikkyu San
Jun 4, 2015

From equation,

4 x 2 x + y = 8 2 2 x 2 x + y = 2 3 2 2 x = 2 3 ( 2 x + y ) 2 2 x = 2 3 + x + y 2 x = 3 + x + y x = 3 + y \begin{aligned}\dfrac{4^x}{2^{x+y}}=&\ 8\\\dfrac{2^{2x}}{2^{x+y}}=&\ 2^3\\2^{2x}=&\ 2^3(2^{x+y})\\\color{#624F41}2^{2x}=&\ \color{#624F41}2^{3+x+y}\\2x=&\ 3+x+y\\\color{#3D99F6}{x=}&\ \color{#3D99F6}{3+y}\end{aligned}

Instead x \color{#3D99F6}x with 3 + y \color{#3D99F6}{3+y} in equation 9 x + y 3 5 y = 243 \dfrac{9^{\color{#3D99F6}x+y}}{3^{5y}}=243 that is,

9 3 + y + y 3 5 y = 243 9 3 + 2 y 3 5 y = 3 5 3 6 + 4 y 3 5 y = 3 5 ( 3 6 + 4 y ) ( 3 5 y ) = 3 5 3 6 y = 3 5 6 y = 5 y = 1 \begin{aligned}\dfrac{9^{\color{#3D99F6}{3+y}+y}}{3^{5y}}=&\ 243\\\dfrac{9^{3+2y}}{3^{5y}}=&\ 3^5\\\dfrac{3^{6+4y}}{3^{5y}}=&\ 3^5\\(3^{6+4y})(3^{-5y})=&\ 3^5\\\color{#624F41}3^{6-y}=&\ \color{#624F41}3^5\\6-\color{#D61F06}y=&\ 5\Rightarrow \color{#D61F06}{y=1}\end{aligned}

instead y \color{#D61F06}y with 1 \color{#D61F06}1 in equation x = 3 + y \color{#3D99F6}{x=3+y} that is, x = 3 + 1 = 4 \color{teal}x=3+\color{#D61F06}1=\color{teal}4

therefore, x + y = 4 + 1 = 5 \color{teal}x+\color{#D61F06}y=\color{teal}4+\color{#D61F06}1=\boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...