x , y x, y and z z - 2.0

Algebra Level 5

Let x , y , z x, y, z be non-negative numbers such that x + y + z = 1 x+y+z=1 . Find the maximum value of x y + x z + y z 3 x y z xy+xz+yz-3xyz to 3 decimal places.


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Áron Bán-Szabó
Jun 25, 2017

p = x + y + z = 1 p=x+y+z=1

x y + y z + z x = q xy+yz+zx=q

x y z = r xyz=r

x y + x z + y z 3 x y z = q 3 r xy+xz+yz-3xyz=q-3r

Using the Schur's Inequality we get

p 3 4 p q + 9 r 0 p^3-4pq+9r\geq0

1 4 q + 9 r 0 1-4q+9r\geq0

q 9 4 r 1 4 q-\frac{9}{4}r\leq\frac{1}{4}

So the maximum value of x y + x z + y z 3 x y z = 0.25 xy+xz+yz-3xyz=\boxed{0.25} .

(The equality will only be true, if one of the variables is 0 0 , the other two variables are 1 2 \frac{1}{2} .)

I got this wrong at first. Here is my solution by Lagrange Multipliers: Define the Lagrangian L = x y + x z + y z 3 x y z λ ( x + y + z 1 ) \mathcal{L}=xy+xz+yz-3xyz-\lambda(x+y+z-1) We set the derivatives with respect to each variable to 0: L x = y + z 3 y z λ = 0 L y = x + z 3 x z λ = 0 L z = x + y 3 x y λ = 0 L λ = 1 x y z = 0 \frac{\partial \mathcal{L}}{\partial x}=y+z-3yz-\lambda=0\\\frac{\partial \mathcal{L}}{\partial y}=x+z-3xz-\lambda=0\\\frac{\partial \mathcal{L}}{\partial z}=x+y-3xy-\lambda=0\\\frac{\partial \mathcal{L}}{\partial \lambda}=1-x-y-z=0

Then consider the equation y + z 3 y z λ = x + z 3 x z λ y x = 3 z ( y x ) x = y or z = 0 y+z-3yz-\lambda=x+z-3xz-\lambda\Rightarrow y-x=3z(y-x)\Rightarrow x=y \text{ or } z=0 Similarly, y = z y=z or x = 0 x=0 and x = z x=z or y = 0 y=0 . This implies that for extremal cases ( x , y , z ) = ( 1 , 0 , 0 ) , ( 0.5 , 0.5 , 0 ) , ( 1 / 3 , 1 / 3 , 1 / 3 ) (x,y,z)=(1,0,0),(0.5,0.5,0),(1/3,1/3,1/3) . We try all three and (0.5, 0.5, 0) results in the maximum value of 0.25.

A Former Brilliant Member - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...