x , y x, y and z z

Algebra Level 4

Let x , y , z x, y, z be non-negative numbers, so that x + y + z = 1 x+y+z=1 . Find the maximum value of

x 2 y + y 2 z + z 2 x x^2y+y^2z+z^2x

Write your answer to 3 decimal places.


The answer is 0.148.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Áron Bán-Szabó
Jun 25, 2017

We will show that the maximum value of the expression is 4 27 \frac{4}{27} .

Suppose x x is the largest (or one of the) number from x , y , z x, y, z . Now y 2 z x y z y^2z\leq xyz and z 2 z x 2 + z 2 2 z^2\leq\frac{zx}{2}+\frac{z^2}{2} , so

x 2 y + y 2 z + z 2 x x 2 y + x y z + z 2 x x ( x + z ) ( y + z 2 ) = 1 2 x ( x + z ) ( 2 y + z ) 1 2 ( 2 ( x + y + z ) 3 ) 3 = 4 27 x^2y+y^2z+z^2x\leq x^2y+xyz+z^2x\leq x(x+z)(y+\frac{z}{2})=\frac{1}{2}x(x+z)(2y+z)\leq\frac{1}{2}(\frac{2(x+y+z)}{3})^3=\frac{4}{27}

(We used the the relationship between arithmetic mean and geometric mean.)

The equality will only be true, if z = 0 z=0 and x = 2 y x=2y , so z = 0 z=0 , y = 1 3 y=\frac{1}{3} , x = 2 3 x=\frac{2}{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...