x + x 1 = 66 x+x^{-1}=66

Algebra Level 2

If x > 1 x > 1 and x + x 1 = 66 , x+x^{-1}=66, what is the value of x 1 2 x 1 2 ? x^{\frac{1}{2}}-x^{-\frac{1}{2}}?

8 9 10 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhishek Singh
Mar 12, 2014

( x 1 2 x 1 2 ) 2 = x + x 1 2 × x 1 2 × x 1 2 (x^{\frac{1}{2}}-x^{-\frac{1}{2}})^{2}= x + x^{-1} -2 \times x^{\frac{1}{2}} \times x^{-\frac{1}{2}} which equals ( x 1 2 x 1 2 ) 2 = 66 2 (x^{\frac{1}{2}}-x^{-\frac{1}{2}})^{2}=66-2 hence x 1 2 x 1 2 = 64 = 8 x^{\frac{1}{2}}-x^{-\frac{1}{2}}=\sqrt{64}=8

Saurabh Mallik
May 12, 2014

( x + 1 x ) 2 = x + 1 x 2 (\sqrt{x}+\frac{1}{\sqrt{x}})^{2}=x+\frac{1}{x}-2

( x + 1 x ) 2 = 66 2 (\sqrt{x}+\frac{1}{\sqrt{x}})^{2}=66-2

( x + 1 x ) 2 = 64 (\sqrt{x}+\frac{1}{\sqrt{x}})^{2}=64

x + 1 x = 64 \sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{64}

x + 1 x = 8 \sqrt{x}+\frac{1}{\sqrt{x}}=8

Thus, the answer is: x + 1 x = 8 \sqrt{x}+\frac{1}{\sqrt{x}}=\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...