XY matters

Algebra Level 2

{ x 2 y 2 = 4 2 x y x + y = 2 \large { \begin{cases} {x^2-y^2=4-2xy} \\ { x+ y = 2 } \end{cases} }

If x x and y y satisfy the system of equations above, find the value of x y x-y .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

16 solutions

WeiLiang Wu
Jun 21, 2015

x 2 y 2 = 4 2 x y x^{2}-y^{2}=4-2xy

( x + y ) ( x y ) = 2 ( 2 x y ) (x+y)(x-y)=2(2-xy)

2 ( x y ) = 2 ( 2 x y ) 2(x-y)=2(2-xy)

x y = 2 x y x-y=2-xy

subtitute 2 to x + y x+y

x y = x + y + x y x-y=x+y+xy

2 y = x y -2y=-xy

So, we get y = 0 x = 2 y=0 x=2

So, x y = 2 x-y=2 .

after substituting 2 to x+y, the equation should be x-y=x+y-xy not x-y=x+y+xy

jomy george - 4 years, 9 months ago

wrong solution !

Banamali Das - 4 years, 9 months ago

How do you get from the second line to the third line?

adithi gowda - 4 years, 11 months ago

No! You can get y=0 x=2 from 2y=xy since if you regard x as 2, y can be every number.

Auguste Richards - 4 years ago
Arian Tashakkor
May 28, 2015

x 2 y 2 = 4 2 x y x^2-y^2=4-2xy

x 2 + y 2 = 4 2 x y x^2+y^2=4-2xy

2 y 2 = 0 y = 0 x = 2 x y = 2 \rightarrow 2y^2=0 \rightarrow y=0 \rightarrow x=2 \rightarrow x-y = 2

From the first equation we have that ( x + y ) ( x y ) = 2 ( 2 x y ) . (x + y)(x - y) = 2(2 - xy).

Then with x + y = 2 x + y = 2 we see that x y = 2 x y , x - y = 2 - xy, and so

( x + y ) ( x y ) = 2 ( 2 x y ) 2 y = x y y ( x 2 ) = 0. (x + y) - (x - y) = 2 - (2 - xy) \Longrightarrow 2y = xy \Longrightarrow y(x - 2) = 0.

So either y = 0 , y = 0, which would in turn imply that x = 2 y = 2 , x = 2 - y = 2, or

x 2 = 0 x = 2 , x - 2 = 0 \Longrightarrow x = 2, which would in turn imply that y = 2 x = 0. y = 2 - x = 0.

Either way we find that x = 2 , y = 0 , x = 2, y = 0, and so x y = 2 0 = 2 . x - y = 2 - 0 = \boxed{2}.

Sourabh Vashisth
Aug 1, 2015

Put y=2-x in the 1st eq. Which gives X^2- 4x+4=0 Then x=2 Y=0 and x-y=2 Hence solved.

x + y = 2 = > x 2 + y 2 + 2 x y = 4 x+y=2 => x^{2}+y^{2}+2xy=4 summing both ecuations 4 + x 2 y 2 = 4 2 x y + x 2 + y 2 + 2 x y 4+x^{2}-y^{2}=4-2xy+x^{2}+y^{2}+2xy = > y = 0 = > x + y = x y => y=0 =>x+y=x-y

Betty BellaItalia
Apr 23, 2017

Vu Vincent
Nov 11, 2016

( x + y ) 2 = 4 (x+y)^2 = 4

x 2 y 2 = ( x 2 + 2 x y + y 2 ) 2 x y \Leftrightarrow x^2 - y^2 = (x^2 + 2xy + y^2) - 2xy

x 2 y 2 = x 2 + y 2 \Leftrightarrow x^2 - y^2 = x^2 + y^2

y = 0 \Leftrightarrow y=0

x = 2 \Leftrightarrow x=2

x y = 2 \Leftrightarrow x-y=2

Oximas Omar
Apr 24, 2021

x 2 y 2 = 4 2 x y x^2-y^2=4-2xy

SO: x 2 + 2 x y y 2 = 4 x^2+2xy-y^2=4 (1)

x + y = 2 x+y = 2

SO: ( x + y ) 2 = x 2 + 2 x y + y 2 = 4 (x+y)^2=x^2+2xy+y^2=4 (2)

equating (1) to (2): y 2 = y 2 y^2=-y^2

which is only true for y = 0 y=0

x + y = 2 x+y = 2 SO x = 2 x=2

Prabhnoor Singh
Mar 22, 2020

x 2 y 2 = 4 2 x y . . . ( i ) x^2-y^2=4-2xy...(i)

x + y = 2... ( i i ) x+y=2...(ii)

Squaring both sides in ( i i ) , (ii),

x 2 + 2 x y + y 2 = 4 x^2+2xy+y^2=4

Substituting in (i),

x 2 y 2 = ( x 2 + 2 x y + y 2 ) 2 x y x^2-y^2=(x^2+2xy+y^2)-2xy

x 2 y 2 = x 2 + y 2 x^2-y^2=x^2+y^2

y 2 = 0 y^2=0

y = 0 y=0

From ( i i ) , x = 2 (ii), x=2

x y = 2 0 = 2 x-y=2-0=2

Hence, the answer is 2 \boxed{2}

Michal Pecho
Jun 26, 2019

x + y = 2 x 2 y 2 = 4 2 x y 2 x y = 4 + y 2 x 2 ( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 2 = x 2 + ( 4 + y 2 x 2 ) + y 2 ( x + y ) 2 = 2 y 2 + 4 4 = 2 y 2 + 4 y = 0 x + y = 2 x = 2 x y = 2 x+y=2\\ { x }^{ 2 }-{ y }^{ 2 }=4-2xy\Rightarrow 2xy=4+{ y }^{ 2 }-{ x }^{ 2 }\\ { (x+y) }^{ 2 }={ x }^{ 2 }+2xy+{ y }^{ 2 }\\ { (x+y) }^{ 2 }={ x }^{ 2 }+(4+{ y }^{ 2 }-{ x }^{ 2 })+{ y }^{ 2 }\\ (x+y)^{ 2 }=2{ y }^{ 2 }+4\\ 4=2{ y }^{ 2 }+4\Rightarrow y=0\\ x+y=2\Rightarrow x=2\\ x-y=2

Ondřej Chmelík
May 19, 2019

The answer is 2.

Wenjin C.
Jun 7, 2016

Given: x 2 y 2 = 4 2 x y x^2-y^2=4-2xy ....[1]

x + y = 2 x+y=2 ...............................[2]

On equation [1], add 2 x y 2xy to both sides of the equation. You'll get:

x 2 + 2 x y y 2 = 4 x^2+2xy-y^2=4 ...............[3]

Now square both sides of equation [2], and you'll get:

x 2 + 2 x y + y 2 = 4 x^2+2xy+y^2=4 ...............[4]

Subtract equation [3] from equation [4], the result will become:

2 y 2 = 0 2y^2=0

y 2 = 0 y^2=0

y = 0 y=0 ......................................[5]

Substituting [5] into [2],

x + 0 = 2 x+0=2

x = 2 x=2

Now, since we got already the values of x x and y y , we can get the value of x y x-y .

Substituting the values we got for x x and y y , x y = 2 0 = 2 x-y=2-0=2 .

Thus, the answer is 2 .

Moderator note:

Simple standard approach.

Given the system of equation: x 2 y 2 = 4 2 x y x^{2} - y^{2} = 4 - 2xy ( E q n . 1 ) (Eqn. 1) and x 2 + 2 x y + y 2 = 4 x^{2} + 2xy + y^{2} = 4 ( E q n . 2 ) (Eqn. 2) Reduce the system makes up as: 2 x 2 + 2 x y = 8 2 x y 2x^{2} + 2xy = 8 - 2xy Factor 2 both sides yields to: x 2 + x y = 4 x y x 2 + 2 x y = 4 x^{2} + xy = 4 - xy \Longrightarrow x^{2} + 2xy = 4 Hence, let x 2 = 4 2 x y x^{2} = 4 - 2xy . So, x 2 y 2 = x 2 x^{2} - y^{2} = x^{2} . Reduce x 2 x^{2} both sides yields to y 2 = 0 y^{2} = 0 . Since x 2 = 4 , x y = 2 x^{2} = 4, x - y = 2 . So, therefore, x 2 y 2 = ( x y ) ( x + y ) = 4 . x^{2} - y^{2} = (x-y) (x+y) = \boxed{4}.

Kevin Silva
Apr 4, 2016

x^2-2xy+y^2=4<br> x^2+2xy-y^2=4<br> <br> 2x^2=8<br> <br> <br> x=2<br> <br> y=0<br>

my approach was............

W.K.T: x 2 y 2 + 2 x i y = ( x + i y ) 2 x^2-y^2+2xiy=(x+iy)^2

applying it we get: ( x + i y ) 2 = 4 (x+iy)^2=4 or x+iy=2 since there is no imaginary part y=0, x=2, x-y=2-0=2

Would you mind elaborating on your solution? I have no idea how you knew to use i i , and I'm very curious to know if there is something I am missing here. And what is W.K.T.? Thanks.

James Wilson - 3 years, 6 months ago
George Nasry
Nov 23, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...