x x , y y , and z z

Algebra Level 3

Let x x , y y , and z z be non zero real numbers such that:

{ x y x + y = 3 y z y + z = 4 x z x + z = 5 \large\begin{cases}\dfrac{xy}{x+y}=3 \\ \dfrac{yz}{y+z}=4\\ \dfrac{xz}{x+z}=5\end{cases}

then x y z x y + y z + x z = m n \dfrac{xyz}{xy+yz+xz}=\dfrac{m}{n} , where m m and n n are relatively prime positive integers.

What is m + n = ? m+n=?


The answer is 167.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 19, 2018

{ x y x + y = 3 x y 3 = x + y x y z 3 = z x + y z . . . ( 1 ) y z y + z = 4 y z 4 = y + z x y z 4 = x y + z x . . . ( 2 ) z x z + x = 5 z x 5 = z + x x y z 5 = y z + x y . . . ( 3 ) \begin{cases} \dfrac {xy}{x+y} = 3 & \implies \dfrac {xy}3 & = x + y & \implies \dfrac {xyz}3 = zx + yz & ...(1) \\ \dfrac {yz}{y+z} = 4 & \implies \dfrac {yz}4 & = y + z & \implies \dfrac {xyz}4 = xy + zx & ...(2) \\ \dfrac {zx}{z+x} = 5 & \implies \dfrac {zx}5 & = z + x & \implies \dfrac {xyz}5 = yz + xy & ...(3) \end{cases}

From ( 1 ) + ( 2 ) + ( 3 ) (1)+(2)+(3) :

( 1 3 + 1 4 + 1 5 ) x y z = 2 ( x y + y z + z x ) x y z x y + y z + z x = 2 1 3 + 1 4 + 1 5 = 120 47 \begin{aligned} \left(\frac 13 + \frac 14 + \frac 15 \right)xyz & = 2(xy+yz+zx) \\ \implies \frac {xyz}{xy+yz+zx} & = \frac 2{\frac 13 + \frac 14 + \frac 15} = \frac {120}{47} \end{aligned}

Therefore, m + n = 120 + 47 = 167 m+n = 120+47 = \boxed{167} .

The given system can be written as

x + y x y = 1 3 1 y + 1 x = 1 3 \dfrac{x + y}{xy} = \dfrac{1}{3} \Longrightarrow \dfrac{1}{y} + \dfrac{1}{x} = \dfrac{1}{3} y + z y z = 1 4 1 z + 1 y = 1 4 \dfrac{y + z}{yz} = \dfrac{1}{4} \Longrightarrow \dfrac{1}{z} + \dfrac{1}{y} = \dfrac{1}{4} x + z x z = 1 5 1 z + 1 x = 1 5 \dfrac{x + z}{xz} = \dfrac{1}{5} \Longrightarrow \dfrac{1}{z} + \dfrac{1}{x} = \dfrac{1}{5}

Adding these together yields

2 ( 1 x + 1 y + 1 z ) = 1 3 + 1 4 + 1 5 = 20 + 15 + 12 60 = 47 60 1 x + 1 y + 1 z = 47 120 2 \left(\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \right) = \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} = \dfrac{20 + 15 + 12}{60} = \dfrac{47}{60} \Longrightarrow \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{47}{120} .

So finally

x y z x y + y z + z x = 1 1 z + 1 x + 1 y = 1 47 120 = 120 47 m + n = 120 + 47 = 167 \dfrac{xyz}{xy + yz + zx} = \dfrac{1}{\dfrac{1}{z} + \dfrac{1}{x} + \dfrac{1}{y}} = \dfrac{1}{\dfrac{47}{120}} = \dfrac{120}{47} \Longrightarrow m + n = 120 + 47 = \boxed{167} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...