x+y+z

Algebra Level 2

Solve the following system of equations.

{ 1 x 1 y = 4 1 x 1 z = 5 1 y + 1 z = 3 \large \begin{cases} \dfrac{1}{x}-\dfrac{1}{y}=4 \\ \dfrac{1}{x}-\dfrac{1}{z}=5 \\ \dfrac{1}{y}+\dfrac{1}{z}=3 \end{cases}

Give your answer as x + y + z x+y+z .

4 9 \dfrac{4}{9} 7 2 \dfrac{7}{2} 5 3 \dfrac{5}{3} 3 7 \dfrac{3}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Majed Kalaoun
Jul 17, 2017

We have { 1 x 1 y = 4 1 x 1 z = 5 1 y + 1 z = 3 \begin{cases}\dfrac{1}{x}-\dfrac{1}{y}=4 \\ \dfrac{1}{x}-\dfrac{1}{z}=5 \\ \dfrac{1}{y}+\dfrac{1}{z}=3\end{cases}

Add all three equations: ( 1 x 1 y ) + ( 1 x 1 z ) + ( 1 y + 1 z ) = 12 \left(\dfrac{1}{x}-\dfrac{1}{y}\right)+\left(\dfrac{1}{x}-\dfrac{1}{z}\right)+\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=12

2 x = 12 x = 1 6 \Rightarrow \dfrac{2}{x}=12\Rightarrow \boxed{x=\dfrac{1}{6}}

Subtract all three equations: ( 1 x 1 y ) ( 1 x 1 z ) ( 1 y + 1 z ) = 4 \left(\dfrac{1}{x}-\dfrac{1}{y}\right)-\left(\dfrac{1}{x}-\dfrac{1}{z}\right)-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=-4

2 y = 4 y = 1 2 \Rightarrow -\dfrac{2}{y}=-4\Rightarrow \boxed{y=\dfrac{1}{2}}

Subtract the first two equations and add the last: ( 1 x 1 y ) ( 1 x 1 z ) + ( 1 y + 1 z ) = 2 \left(\dfrac{1}{x}-\dfrac{1}{y}\right)-\left(\dfrac{1}{x}-\dfrac{1}{z}\right)+\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=2

2 z = 2 z = 1 \Rightarrow \dfrac{2}{z}=2\Rightarrow \boxed{z=1}

1 + 1 2 + 1 6 = 5 3 1+\dfrac{1}{2}+\dfrac{1}{6}=\boxed{\dfrac{5}{3}}

This is a shorter solution actually. But after solving for x and y, we can solve for z by substitution.

A Former Brilliant Member - 3 years, 10 months ago

Log in to reply

Yes, but I preferred the adding and subtracting method to solve for z z as I see it as being more insightful.

Majed Kalaoun - 3 years, 10 months ago

Let a = 1 x , b = 1 y a=\dfrac{1}{x}, b=\dfrac{1}{y} and c = 1 z c=\dfrac{1}{z}

Then the three equations become,

a b = 4 a-b=4 ( 1 ) \color{#D61F06}(1)

a c = 5 a-c=5 ( 2 ) \color{#D61F06}(2)

b + c = 3 b+c=3 ( 3 ) \color{#D61F06}(3)

From ( 1 ) \color{#D61F06}(1) , a = 4 + b a=4+b . From ( 2 ) \color{#D61F06}(2) , a = 5 + c a=5+c .

a = a a=a

4 + b = 5 + c 4+b=5+c

b = 1 + c b=1+c

Substitute the above equation in ( 3 ) \color{#D61F06}(3) . We have

1 + c + c = 3 1+c+c=3

2 c = 2 2c=2

c = 1 c=1

Solving for b b , we have

b = 1 + 1 = 2 b=1+1=2

Solving for a a , we have

a = 4 + 2 = 6 a=4+2=6

Now, the values of x , y x,y and z z are,

x = 1 6 \boxed{x=\dfrac{1}{6}} y = 1 2 \boxed{y=\dfrac{1}{2}} z = 1 \boxed{z=1}

Finally,

x + y + z = 1 6 + 1 2 = 1 = 1 6 + 3 6 + 6 6 = x+y+z=\dfrac{1}{6}+\dfrac{1}{2}=1=\dfrac{1}{6}+\dfrac{3}{6}+\dfrac{6}{6}= 5 3 \boxed{\color{#D61F06}\large\dfrac{5}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...