Y-Δ resistor transfiguration problem

Let R A , R B , R C {R_{A}, R_{B}, R_{C}} be the resistors of a Y configuration and R 1 , R 2 , R 3 {R_{1}, R_{2}, R_{3}} the resistors of a Δ configuration. By the required resistors equalities, the following system of equations can be written:

R 1 ( R 2 + R 3 ) R 1 + R 2 + R 3 = R A + R B , \frac{{{R_1} \cdot \left( {{R_2} + {R_3}} \right)}}{{{R_1} + {R_2} + {R_3}}} = {R_A} + {R_B},

R 2 ( R 1 + R 3 ) R 1 + R 2 + R 3 = R C + R B , \frac{{{R_2} \cdot \left( {{R_1} + {R_3}} \right)}}{{{R_1} + {R_2} + {R_3}}} = {R_C} + {R_B},

R 3 ( R 1 + R 2 ) R 1 + R 2 + R 3 = R A + R C . \frac{{{R_3} \cdot \left( {{R_1} + {R_2}} \right)}}{{{R_1} + {R_2} + {R_3}}} = {R_A} + {R_C}.

Transfiguration is a process in which a configuration of resistors is being transformed into a different configuration allowing to simplify electrical circuits. Express R 1 , R 2 , R 3 {R_{1}, R_{2}, R_{3}} in terms of R A , R B , R C {R_{A}, R_{B}, R_{C}} . Completing such task will result in a system of formulas with which we can perform Y-Δ transfiguration and thus simplify any given resistor configuration within an electrical circuit. Given options are in terms of R 1 {R_{1}} , hence it shows that right steps have been followed. Showing your work would, of course, be appreciated.

R 1 = R A R B + R A R C R A + R B + R C {R_1} = \frac{{{R_A} \cdot {R_B} + {R_A} \cdot {R_C}}}{{{R_A} + {R_B} + {R_C}}} R 1 = 2 R C ( R A + R B ) R A + R B + R C {R_1} = \frac{{2 \cdot {R_C} \cdot \left( {{R_A} + {R_B}} \right)}}{{{R_A} + {R_B} + {R_C}}} R 1 = R A R B + R C R B R C {R_1} = {R_A} \cdot \frac{{{R_B} + {R_C}}}{{{R_B} \cdot {R_C}}} R 1 = R A + R B + R C R A + R B R A R B {R_1} = {R_A} + {R_B} + {R_C} \cdot \frac{{{R_A} + {R_B}}}{{{R_A} \cdot {R_B}}} R 1 = R A R C + R A R B + R A R B R C {R_1} = {R_A} \cdot {R_C} + {R_A} \cdot {R_B} + \frac{{{R_A} \cdot {R_B}}}{{{R_C}}} R 1 = R B + R C + R A R B + R C R B R C {R_1} = {R_B} + {R_C} + {R_A} \cdot \frac{{{R_B} + {R_C}}}{{{R_B} \cdot {R_C}}} R 1 = R A ( R B R C ) R A + R B + R C {R_1} = \frac{{{R_A}\left( {{R_B} - {R_C}} \right)}}{{{R_A} + {R_B} + {R_C}}} R 1 = R A + R B + R A R B R C {R_1} = {R_A} + {R_B} + \frac{{{R_A} \cdot {R_B}}}{{{R_C}}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...