An algebra problem by A Former Brilliant Member

Algebra Level 4

1 1 2 3 4 + 1 2 3 4 5 + 1 3 4 5 6 + till 50 terms = ? \dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+\dfrac{1}{3\cdot4\cdot5\cdot6}+\cdots\text{ till 50 terms} = \, ?

Give your answer upto 4 decimal places.


The answer is 0.055553184.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Atul Shivam
Dec 23, 2015

Hint: apply telescopic series to get the result for sum of n n terms which is S n = 1 3 [ 1 1 × 2 × 3 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ] S_n=\frac{1}{3}[\frac{1}{1×2×3}-\frac{1}{(n+1)(n+2)(n+3)}] and hence put n = 50 n=50 to get sum equal to 0.055 \boxed{0.055}

nice solution :)

aritra sen - 5 years, 5 months ago
Akshat Sharda
Dec 23, 2015

n = 1 50 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 6 n = 1 50 ( 1 n 3 n + 1 + 3 n + 2 1 n + 3 ) 1 6 ( n = 1 50 1 n 3 n = 1 50 1 n + 1 + 3 n = 1 50 1 n + 2 n = 1 50 1 n + 3 ) 1 6 ( n = 1 50 1 n 3 n = 2 51 1 n + 3 n = 3 52 1 n n = 4 53 1 n ) 1 6 ( 1 + 1 2 + 1 3 + 3 52 1 51 1 52 1 53 ) 1 6 ( 883 2562 ) = 0.0555 \displaystyle \sum^{50}_{n=1}\frac{1}{n(n+1)(n+2)(n+3)}=\frac{1}{6} \displaystyle \sum^{50}_{n=1}\left(\frac{1}{n}-\frac{3}{n+1}+\frac{3}{n+2}-\frac{1}{n+3}\right) \\ \frac{1}{6}\left(\displaystyle \sum^{50}_{n=1}\frac{1}{n}-3 \displaystyle \sum^{50}_{n=1}\frac{1}{n+1}+3 \displaystyle \sum^{50}_{n=1}\frac{1}{n+2}- \displaystyle \sum^{50}_{n=1}\frac{1}{n+3}\right) \\ \frac{1}{6}\left(\displaystyle \sum^{50}_{n=1}\frac{1}{n}-3 \displaystyle \sum^{51}_{n=2}\frac{1}{n}+3 \displaystyle \sum^{52}_{n=3}\frac{1}{n}- \displaystyle \sum^{53}_{n=4}\frac{1}{n}\right) \\ \frac{1}{6}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{3}{52}-\frac{1}{51}-\frac{1}{52}-\frac{1}{53}\right) \\ \frac{1}{6}\left(\frac{883}{2562}\right) = \boxed{0.0555}

Yes, this is the standard Partial Fractions - Cover Up Rule method.

For a quicker method, you can do this (to get Atul Shivam's answer):

1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 3 3 n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 3 n + 3 n n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 3 ( 1 n ( n + 1 ) ( n + 2 ) 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ) = 1 3 ( T n T n + 1 ) \begin{aligned} \dfrac1{n(n+1)(n+2)(n+3)} &= &\dfrac13 \cdot \dfrac3{n(n+1)(n+2)(n+3)} \\ &= & \dfrac13 \cdot \dfrac{n+3 - n}{n(n+1)(n+2)(n+3)} \\ &= & \dfrac13 \left( \dfrac{1}{n(n+1)(n+2)} - \dfrac{1 }{(n+1)(n+2)(n+3)} \right) \\ &= & \dfrac13 \left( T_n - T_{n+1} \right) \end{aligned}

Apply telescoping sum, we get T 1 T 51 T_1 - T_{51} as desired.

Pi Han Goh - 5 years, 5 months ago

Log in to reply

Thank you for the explanation and the wiki link..

Niranjan Khanderia - 5 years, 3 months ago

nice solution :)

aritra sen - 5 years, 5 months ago

The Cover Up Rule in Partial Fraction is the best method. However just as a different approach we have :-
n = 1 50 f ( n ) = n = 1 50 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) . L e t t = n 2 + 3 n + 1. f ( n ) = f ( t ) = 1 ( t 1 ) ( t + 1 ) = 1 2 { 1 t 1 1 t + 1 } S u b s t i t u t i n g b a c k n f o r t , f ( n ) = 1 2 ( 1 n ( n + 3 ) 1 ( n + 1 ) ( n + 2 ) ) . 1 n ( n + 3 ) = 1 3 { 1 n 1 n + 3 } a n d 1 ( n + 1 ) ( n + 2 ) , we can calculate directly since (n+2)=(n+1) +1 . n = 1 50 f ( n ) = n = 1 50 1 6 ( 1 n 1 n + 3 ) 1 2 ( 1 n + 1 1 n + 2 ) In the first group, from n to n+3 , first three of n, and last three of n+3 are only term not canceling . n = 1 50 f ( n ) = 1 6 ( 1 1 + 1 2 + 1 3 1 51 1 52 1 53 ) 1 2 ( 1 2 1 51 ) = 0.055741 \displaystyle \sum^{50}_{n=1}f(n)= \sum^{50}_{n=1}\frac{1}{n(n+1)(n+2)(n+3)}.\\ Let ~ t=n^2+3n+1. ~\therefore ~f(n)=f(t)=\dfrac 1 {(t-1)(t+1)}=\frac 1 2 *\{\dfrac 1 {t - 1} - \dfrac 1 {t+1}\}\\ Substituting ~back ~n~ for~t, ~ f(n)=\frac 1 2 *\left (\dfrac{1}{n(n+3)} -\dfrac{1}{(n+1)(n+2)} \right ).\\ \dfrac{1}{n(n+3)} =\frac 1 3*\{\dfrac 1 n - \dfrac 1 {n+3} \} ~~~~\\ and ~~~\dfrac 1 {(n+1)(n+2)},\text{ we can calculate directly since (n+2)=(n+1) +1 . } \\ \therefore ~ \displaystyle \sum^{50}_{n=1}f(n) = \sum^{50}_{n=1}\color{#3D99F6}{ \frac 1 6*\left (\dfrac 1 n - \dfrac 1 {n+3} \right ) } - \frac 1 2*\left (\dfrac 1 {n+1} - \dfrac 1 {n+2} \right ) \\ \color{#3D99F6}{\text{In the first group,} } \text{ from n to n+3 , first three of n, }\\ \text{and last three of n+3 are only term not canceling}.\\ \implies ~\displaystyle \sum^{50}_{n=1}f(n)=\frac 1 6 *\left(\dfrac 1 1 +\dfrac 1 2 +\dfrac 1 3- \dfrac 1 { 51} -\dfrac 1 {52} - \dfrac 1 {53} \right ){\Large -} \frac 1 2 *\left(\dfrac 1 2 - \dfrac 1 { 51} \right )\\ = \Large ~~~\color{#D61F06}{\boxed {~~~~0.055741~~~} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...