Yeah, a Telescoping Sum..

Algebra Level 5

The value of

k = 0 997 ( 1 ) k k 3 + 9 k 2 + 26 k + 24 ( 997 k ) \displaystyle \sum_{k=0}^{997} \frac{(-1)^k}{k^3+9k^2+26k+24}\binom{997}{k}

Can be expressed in the form m n \frac{m}{n} . Where m m and n n are coprime positive integers, find m + n m+n .


The answer is 2002001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sean Ty
Oct 12, 2014

We will prove a more general case.

We have k = 0 n ( 1 ) k ( k + 2 ) ( k + 3 ) ( k + 4 ) ( n k ) \displaystyle \sum_{k=0}^{n} \dfrac{(-1)^{k}}{(k+2)(k+3)(k+4)}\binom{n}{k} = k = 0 n ( 1 ) k k + 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 4 k + 4 ) =\sum_{k=0}^{n} (-1)^{k}\dfrac{k+1}{(n+1)(n+2)(n+3)(n+4)}\binom{n+4}{k+4} = 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) k = 4 n + 4 ( 1 ) k ( k 3 ) ( n + 4 k ) =\dfrac{1}{(n+1)(n+2)(n+3)(n+4)}\sum_{k=4}^{n+4} (-1)^{k}(k-3)\binom{n+4}{k}

So now we only have to calculate k = 4 n + 4 ( 1 ) k ( k 3 ) ( n + 4 k ) \sum_{k=4}^{n+4} (-1)^{k}(k-3)\binom{n+4}{k}

Note that k = 4 n + 4 ( 1 ) k ( k 3 ) ( n + 4 k ) = k = 4 n + 4 ( 1 ) k k ( n + 4 k ) 3 k = 4 n + 4 ( 1 ) k ( n + 4 k ) \sum_{k=4}^{n+4}(-1)^{k}(k-3)\binom{n+4}{k}=\sum_{k=4}^{n+4}(-1)^{k} k\binom{n+4}{k}-3\sum_{k=4}^{n+4}(-1)^{k}\binom{n+4}{k} = 1 n + 4 k = 1 n + 4 ( 1 ) k ( n + 3 k 1 ) = 0 =\dfrac{1}{n+4}\sum_{k=1}^{n+4}(-1)^{k}\binom{n+3}{k-1}=0

Thus,

k = 4 n + 4 ( 1 ) k ( k 3 ) ( n + 4 k ) = k = 0 3 ( 1 ) k ( k 3 ) ( n + 4 k ) \sum_{k=4}^{n+4}(-1)^{k}(k-3)\binom{n+4}{k}=-\sum_{k=0}^{3}(-1)^{k}(k-3)\binom{n+4}{k} = ( n + 1 ) ( n + 2 ) 2 =\dfrac{(n+1)(n+2)}{2}

And the sum we seek is then 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) × ( n + 1 ) ( n + 2 ) 2 = 1 2 ( n + 3 ) ( n + 4 ) \dfrac{1}{(n+1)(n+2)(n+3)(n+4)} \times \dfrac{(n+1)(n+2)}{2}=\dfrac{1}{2(n+3)(n+4)}

Substituting n = 997 n=997 , we will arrive with the answer 1 2002000 \dfrac{1}{2002000} , and m + n = 2002001 m+n=\boxed{2002001}

Does anyone have a link to a website or pdf detailing how to manipulate permutation sums?

Trevor Arashiro - 6 years, 8 months ago

Done the same way.

Ronak Agarwal - 6 years, 8 months ago

I did it the same way. Nice solution. @Sean Ty

Sandeep Bhardwaj - 6 years, 7 months ago

so simple...

Figel Ilham - 6 years, 7 months ago

How did you arrive with 2nd Expression?

Christian Baldo - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...