Yeah Y2J!

Calculus Level 4

Y = 0 1 ln ( 1 + x ) x d x Y = \int_0^1 \dfrac{\ln(1+x)}x \, dx

Find 24 Y π 2 \left \lfloor \dfrac{24Y}{\pi^2} \right \rfloor .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 20, 2016

Y = 0 1 ln ( 1 + x ) x d x = 0 1 n = 1 ( 1 ) n + 1 x n n x d x Maclaurin series of ln ( 1 + x ) = 0 1 n = 1 ( 1 ) n + 1 x n 1 n d x = n = 1 0 1 ( 1 ) n + 1 x n 1 n d x = n = 1 ( 1 ) n + 1 n 2 = n = 1 1 n 2 2 n = 1 1 ( 2 n ) 2 = n = 1 1 n 2 1 2 n = 1 1 n 2 = 1 2 n = 1 1 n 2 = π 2 12 \begin{aligned} Y & = \int_0^1 \frac{\color{#3D99F6}{\ln(1+x)}}{x} dx \\ & = \int_0^1 \frac{\color{#3D99F6}{\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}x^n}{n}}}{x} dx \quad \quad \small \color{#3D99F6}{\text{Maclaurin series of }\ln(1+x)} \\ & = \int_0^1 \sum_{n=1}^\infty \frac{(-1)^{n+1}x^{n-1}}{n} dx \\ & = \sum_{n=1}^\infty \int_0^1 \frac{(-1)^{n+1}x^{n-1}}{n} dx \\ & = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2} \\ & = \sum_{n=1}^\infty \frac{1}{n^2} - 2 \sum_{n=1}^\infty \frac{1}{(2n)^2} \\ & = \sum_{n=1}^\infty \frac{1}{n^2} - \frac{1}{2} \sum_{n=1}^\infty \frac{1}{n^2} \\ & = \frac{1}{2} \sum_{n=1}^\infty \frac{1}{n^2} \\ & = \frac{\pi^2}{12} \end{aligned}

24 Y π 2 = 2 = 2 \Rightarrow \left \lfloor \dfrac{24Y}{\pi^2} \right \rfloor = \left \lfloor 2 \right \rfloor = \boxed{2}

Sir, is there any method beside maclaurin series to solve this sort of integrals.

Syed Shahabudeen - 5 years, 4 months ago

Log in to reply

I can't think of any yet.

Chew-Seong Cheong - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...