A calculus problem by Dwaipayan Shikari

Calculus Level 5

( 1 2 π ) 2 + ( 1 2 + π ) 2 + ( 1 6 π ) 2 + ( 1 6 + π ) 2 + ( 1 10 π ) 2 + ( 1 10 + π ) 2 + \small \left(\frac 1{2 - \pi} \right)^2 + \left(\frac 1{2 +\pi} \right)^2 + \left(\frac 1{6 - \pi} \right)^2 + \left(\frac 1{6 +\pi} \right)^2 + \left(\frac 1{10 - \pi} \right)^2 + \left(\frac 1{10 +\pi} \right)^2 + \cdots

The sum above can be represented as π a 2 b sec 2 ( π a b ) \dfrac{π^a}{2^b}\sec^2\left(\dfrac{π^a}{b}\right) , where a a and b b are integers. Find b 2 a b-2a .

The problem is original


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Jan 26, 2021

tan ( x ) = 1 π 2 x 1 π 2 + x + 1 3 π 2 x 1 3 π 2 + x + 1 5 π 2 x \tan(x)= \frac{1}{\frac{π}{2}-x}-\frac{1}{\frac{π}{2}+x}+\frac{1}{\frac{3π}{2}-x}-\frac{1}{\frac{3π}{2}+x}+\frac{1}{\frac{5π}{2}-x}-\cdots π 2 tan ( π x 2 ) = 1 1 x 1 1 + x + 1 3 x 1 3 + x + 1 5 x 1 5 + x + \frac{π}{2}\tan(\frac{πx}{2})= \frac{1}{1-x}-\frac{1}{1+x}+\frac{1}{3-x}-\frac{1}{3+x}+\frac{1}{5-x}-\frac{1}{5+x}+\cdots After Differentiating respect to x x , we get π 2 4 sec 2 ( π x 2 ) = 1 ( 1 x ) 2 + 1 ( 1 + x ) 2 + 1 ( 3 x ) 2 + 1 ( 3 + x ) 2 + \frac{π^2}{4}\sec^2(\frac{πx}{2})= \frac{1}{(1-x)^2}+\frac{1}{(1+x)^2}+\frac{1}{(3-x)^2}+\frac{1}{(3+x)^2}+\cdots Take x = π 2 x=\frac{π}{2} The series becomes π 2 2 4 sec 2 ( π 2 4 ) = ( 1 2 π ) 2 + ( 1 2 + π ) 2 + ( 1 6 π ) 2 + \frac{π^2}{2^4}\sec^2(\frac{π^2}{4})= \left(\frac 1{2-π}\right)^2+\left(\frac 1{2+π}\right)^2+\left(\frac 1{6-π}\right)^2+\cdots Answer is b 2 a = 0 \boxed{b-2a}=0 Proof of the above Proposition \color{#E81990}\large \textrm{Proof of the above Proposition}

c o s x = ( 1 2 x π ) ( 1 + 2 x π ) ( 1 2 x 3 π ) ( 1 + 2 x 3 π ) ( 1 2 x 5 π ) ( 1 + 2 x 5 π ) . . . . \mathrm{cosx}=\left(\mathrm{1}-\frac{\mathrm{2}{x}}{\pi}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\pi}\right)\left(\mathrm{1}-\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)\left(\mathrm{1}-\frac{\mathrm{2}{x}}{\mathrm{5}\pi}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{5}\pi}\right).... l o g ( c o s x ) = l o g ( 1 2 x π ) + l o g ( 1 + 2 x π ) + l o g ( 1 2 x 3 π ) + l o g ( 1 + 2 x 3 π ) + . . \mathrm{log}\left(\mathrm{cosx}\right)=\mathrm{log}\left(\mathrm{1}-\frac{\mathrm{2}{x}}{\pi}\right)+\mathrm{log}\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\pi}\right)+\mathrm{log}\left(\mathrm{1}-\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)+\mathrm{log}\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)+.. Differentiating both sides Respect to x x s i n x c o s x = 2 π 1 2 π x + 2 π 1 + 2 π x 2 3 π 1 2 3 π x + 2 3 π 1 + 2 3 π x . . . -\frac{\mathrm{sinx}}{\mathrm{cosx}}=\frac{-\frac{\mathrm{2}}{\pi}}{\mathrm{1}-\frac{\mathrm{2}}{\pi}{x}}+\frac{\frac{\mathrm{2}}{\pi}}{\mathrm{1}+\frac{\mathrm{2}}{\pi}{x}}-\frac{\frac{\mathrm{2}}{\mathrm{3}\pi}}{\mathrm{1}-\frac{\mathrm{2}}{\mathrm{3}\pi}{x}}+\frac{\frac{\mathrm{2}}{\mathrm{3}\pi}}{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}\pi}{x}}-... t a n x = 1 π 2 x 1 π 2 + x + 1 3 π 2 x 1 3 π 2 + x + . . \boldsymbol{\mathrm{tanx}}=\frac{\mathrm{1}}{\frac{\boldsymbol{\pi}}{\mathrm{2}}-\boldsymbol{{x}}}-\frac{\mathrm{1}}{\frac{\boldsymbol{\pi}}{\mathrm{2}}+\boldsymbol{{x}}}+\frac{\mathrm{1}}{\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2}}-\boldsymbol{{x}}}-\frac{\mathrm{1}}{\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2}}+\boldsymbol{{x}}}+..

2 2 and 4 4 are not coprime, because gcd ( 2 , 4 ) = 2 \gcd(2,4) = 2 and not 1 1 . I have amended the problem statement..

You can use \pi for π \pi , \times for × \times , \dfrac \pi2 π 2 \dfrac \pi2 for proper size fraction, the braces { } are not necessary if there is only one character, and \left( \right) to have auto fit brackets ( 1 2 ) \left(\dfrac 12 \right) .

Chew-Seong Cheong - 4 months, 2 weeks ago

Log in to reply

Thanks sir .That was a mistake

Dwaipayan Shikari - 4 months, 2 weeks ago

I have never seen the series in the top row. Could you explain?

Isaac YIU Math Studio - 4 months, 2 weeks ago

Log in to reply

Yes ,I have added an explanation

Dwaipayan Shikari - 4 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...