Yet another question 5

Algebra Level 5

Let a quadratic equation be represented as

A ( 3 2 ) x 2 + B x ( 3 + 2 ) + C = 0 , A(\sqrt{3} - \sqrt{2})x^2 + \dfrac {Bx}{(\sqrt{3} + \sqrt{2})} + C=0,

where A = ( 49 + 20 6 ) 1 / 4 A = (49 + 20\sqrt 6)^{1/4} and B = 8 3 + 8 6 3 + 16 3 + . . . . B= 8\sqrt 3 + \dfrac{8\sqrt6}{\sqrt 3} + \dfrac{16}{\sqrt3} + .... .

Let α \alpha and β \beta be the roots of the above equation which are related to the constraint ( α β = ( 6 6 ) k , ( \displaystyle | \alpha - \beta | = (6\sqrt6)^k,

where k = log 6 10 2 log 6 5 + log 6 log 6 18 + log 6 72 \displaystyle k = \log_{6}10 - 2\log_6 \sqrt5 + \log_6\sqrt{\log_{6} 18 + \log_{6} 72} .

Find the value of C C .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Apr 28, 2016

A = ( ( 24 + 25 ) 2 ) 1 / 4 = ( ( 3 + 2 ) 2 ) 1 / 2 = 3 + 2 A=((\sqrt{24}+\sqrt{25})^2)^{1/4}\\=((\sqrt 3+\sqrt 2)^2)^{1/2}=\sqrt 3+\sqrt 2 B B is a sum of Infinite GP with r = 6 3 r=\dfrac{\sqrt 6}{3} . B = 8 3 1 6 3 = 24 3 2 B=\dfrac{8\sqrt 3}{1-\dfrac{\sqrt 6}{3}}=\dfrac{24}{\sqrt 3-\sqrt 2}

Hence equation is : x 2 + 24 x + C = 0 \large x^2+24x+C=0

Using property log a b + log a c = log a b c \log_a b+\log_a c=\log_a bc , k = log 6 10 log 6 5 + log 6 4 = log 6 4 \large k=\log_6 10-\log_6 5+\log_6 \sqrt{4}\\\large =\log_6 4

We note ( α β ) 2 = ( α + β ) 2 4 α β = 576 4 C (Using Vieta’s) \large (\alpha -\beta)^2=(\alpha +\beta)^2-4\alpha \beta\\=576-4C~~~~~\text{(Using Vieta's)}

( 6 3 / 2 ) k = ( 6 log 6 4 3 / 2 ) = 8 \large (6^{3/2})^k=(\color{#D61F06}{6}^{\log_{\color{#D61F06}{6}}4^{3/2}})=8

Hence, 576 4 C = 64 576-4C=64 C = 144 16 = 128 \implies \large C=144-16=\boxed{\Large 128}

Nilesh u should make a set of your YET ANOTHER EASY QUESTION ! and link it to your questions like Aniket

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...