Yet another question 6

Algebra Level 5

n = 1 6 a log 2 ( f ( ( 1 + 3 i ) n ) ) \large \displaystyle \sum_{n=1}^{6a} \log_2 \Bigl(\left \vert f \bigl((1+\sqrt3 i)^n\bigr)\right \vert \Bigr)

Let f ( z ) f(z) be the real part of the complex number z z .

Evaluate the summation above for a Z + a \in \mathbb{Z^+} .


Try more questions here .
18 a 2 + a 18a^2 +a 18 a 2 2 a 18a^2 -2a 18 a 2 + 3 a 18a^2 +3a 18 a 2 + 5 a 18a^2 +5a 18 a 2 3 a 18a^2 -3a 18 a 2 a 18a^2 -a 18 a 2 4 a 18a^2 -4a 18 a 2 5 a 18a^2 -5a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 28, 2016

It is given that f ( z ) = { z } f(z) = \Re \{ z\} . Therefore,

S = n = 1 6 a log 2 ( f ( ( 1 + 3 i ) n ) ) = n = 1 6 a log 2 ( { 2 n ( 1 2 + 3 2 i ) n } ) = n = 1 6 a log 2 ( { 2 n e n π 3 i } ) = n = 1 6 a log 2 ( 2 n cos ( n π 3 ) ) = log 2 ( 2 ( 1 2 ) ) + log 2 ( 2 2 ( 1 2 ) ) + log 2 ( 2 3 ( 1 ) ) + log 2 ( 2 4 ( 1 2 ) ) + + log 2 ( 2 6 a ( 1 ) ) = log 2 ( 2 ( 1 2 ) ) + log 2 ( 2 2 ( 1 2 ) ) + log 2 ( 2 3 ) + log 2 ( 2 4 ( 1 2 ) ) + log 2 ( 2 5 ( 1 2 ) ) + + log 2 ( 2 6 a ) = log 2 ( 2 ( 1 ) ) + log 2 ( 2 ) + log 2 ( 2 3 ) + log 2 ( 2 3 ) + log 2 ( 2 4 ) + log 2 ( 2 6 ) + + log 2 ( 2 6 a ) = 0 + 1 + 3 + 3 + 4 + 6 + 6 + 7 + 9 + 9 + 10 + 12 + 12 + 13 + 15 + 15 + 16 + + 6 a = 1 + ( 2 + 1 ) + 3 + 4 + ( 5 + 1 ) + 6 + 7 + 9 + 9 + 10 + ( 11 + 1 ) + 12 + + ( 6 a 1 + 1 ) = n = 1 6 a 1 n + 2 a = ( 6 a 1 ) 6 a 2 + 2 a = 18 a 2 3 a + 2 a = 18 a 2 a \begin{aligned} S & = \sum_{n=1}^{6a} \log_2 \left(\left| f \left((1+\sqrt{3}i)^n \right) \right| \right) \\ & = \sum_{n=1}^{6a} \log_2 \left(\left| \Re \left \{2^n \left(\frac 12 +\frac{\sqrt{3}}{2} i \right)^n \right \} \right| \right) \\ & = \sum_{n=1}^{6a} \log_2 \left(\left| \Re \left \{2^n e^{\frac{n\pi}{3}i} \right \} \right| \right) \\ & = \sum_{n=1}^{6a} \log_2 \left(\left| 2^n \cos \left( \frac{n\pi}{3} \right) \right| \right) \\ & = \small \log_2 \left(\left| 2 \left( \frac{1}{2}\right) \right| \right) + \log_2 \left(\left| 2^2 \left( -\frac{1}{2}\right) \right| \right) + \log_2 \left(\left| 2^3 \left(-1\right) \right| \right) + \log_2 \left(\left| 2^4 \left( - \frac{1}{2}\right) \right| \right) + \cdots + \log_2 \left(\left| 2^{6a} \left(1\right) \right| \right) \\ & = \small \log_2 \left(2 \left( \frac{1}{2}\right) \right) + \log_2 \left(2^2 \left( \frac{1}{2}\right) \right) + \log_2 \left(2^3 \right) + \log_2 \left( 2^4 \left( \frac{1}{2}\right) \right) + \log_2 \left( 2^5 \left( \frac{1}{2}\right) \right) + \cdots + \log_2 \left( 2^{6a} \right) \\ & = \log_2 \left(2 \left( 1 \right) \right) + \log_2 \left(2 \right) + \log_2 \left(2^3 \right) + \log_2 \left( 2^3\right) + \log_2 \left( 2^4 \right) + \log_2 \left( 2^6 \right) + \cdots + \log_2 \left( 2^{6a} \right) \\ & = 0 + 1 + \color{#3D99F6}{3} + 3 + 4 + \color{#3D99F6}{6} + 6 + 7 + 9 + 9 + 10 + \color{#3D99F6}{12} + 12 + 13 + \color{#3D99F6}{15} + 15 + 16 + \cdots + \color{#3D99F6}{6a} \\ & = 1 + \color{#3D99F6}{(2+1)} + 3 + 4 + \color{#3D99F6}{(5+1)} + 6 + 7 + 9 + 9 + 10 + \color{#3D99F6}{(11+1)} + 12 + \cdots + \color{#3D99F6}{(6a-1+1)} \\ & = \sum_{n=1}^{6a-1} n + 2a = \frac{(6a-1)6a}{2} + 2a = 18a^2-3a+2a = \boxed{18a^2-a} \end{aligned}

Putting a=1/6 the func equates to 0 but ans equates to 1/3

Aniket Sanghi - 5 years, 1 month ago

Log in to reply

Check the question correctly. It states that a Z + a\in\mathbb{Z^+}

Vignesh S - 5 years, 1 month ago

Log in to reply

It is updated later!

Aniket Sanghi - 5 years, 1 month ago

Great solution sir !!

neelesh vij - 5 years, 1 month ago

Nice solution!

Aniket Sanghi - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...