You are supposed to solve this (part 3)

Level pending

Source: Geogebra

I have a metal rectangle sheet, when looked sideway, it looks like this:

The width of the sheet, i.e., the length of X Y XY is 1. I want to bend it such that it makes an isosceles trapezoid A C D B ACDB (without the base AB), like this:

Let A C AC be x y \frac{x}{y} such that x x and y y are positive integers and x y \frac{x}{y} is an irreducible fraction and A C D \angle ACD be z z degree. Given that the area of A C D B ACDB has reached its maximum (and the total length of A C AC , C D CD and D B DB is equal to the length of X Y XY , assuming when bending the sheet, there is no distortion in length), what is the value of x y z xyz ?

Note: \textbf{Note:} Don't try to measure using the shape given, it has not reached its maximum (the correct shape is in the solution).


The answer is 360.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Minh Bùi Nhật
Jan 21, 2020

Source: Geogebra

Let C E CE and D F DF be 2 altitudes of the trapezoid A C D B ACDB . Let S S be the area of the trapezoid A C D B ACDB . c Let the side A C AC be a a , the base C B CB be b b , the altitude C E CE be h h and A E AE be t t . Notice that the total length of A C AC , C D CD , and D B DB is equal to the length of XY. Hence, we have: 2 a + b = 1 2a+b=1 .

Consider the triangle A C E \triangle ACE , applying the Pythagoras theorem, we have:

A E 2 = A C 2 E C 2 { AE }^{ 2 }={ AC }^{ 2 }-{ EC }^{ 2 }

h 2 = a 2 t 2 \Rightarrow { h }^{ 2 }={ a }^{ 2 }-{ t }^{ 2 }

h = a 2 t 2 \Rightarrow { h }=\sqrt { { a }^{ 2 }-{ t }^{ 2 } }

Notice that C E / / D F CE // DF (since they are both the altitudes of the trapezoid ACDB) and A B / / C D AB // CD (since they are both the bases of the trapezoid ACDB), hence E F D C EFDC is a parallelogram { E F = C D = b C E = D F \Rightarrow \begin{cases} EF=CD=b \\ CE=DF \end{cases} .

Consider A C E \triangle ACE and B D F \triangle BDF , applying the Pythagoras theorem, we have:

{ A E 2 = A C 2 E C 2 B F 2 = B D 2 D F 2 \begin{cases} { AE }^{ 2 }={ AC }^{ 2 }-{ EC }^{ 2 } \\ { BF }^{ 2 }={ BD }^{ 2 }-{ DF }^{ 2 } \end{cases}\\ \\ \\ \\

Moreover, we had { A C = B D C E = D F \begin{cases} AC=BD \\ CE=DF \end{cases}\\ \\ \\ \\ .

From that, we can conclude that B F = A E = t BF=AE=t

The area of the trapezoid A C D B ACDB is:

S = ( A B + C D ) C E 2 S=\frac { (AB+CD)CE }{ 2 }

S = ( A E + E F + F B + b ) h 2 \Rightarrow S=\frac { (AE+EF+FB+b)h }{ 2 }

S = ( t + b ) a 2 t 2 \Rightarrow S=(t+b)\sqrt { { a }^{ 2 }-t^{ 2 } }

S 2 = ( t + b ) 2 ( a 2 t 2 ) \Rightarrow { S }^{ 2 }={ (t+b) }^{ 2 }({ a }^{ 2 }-{ t }^{ 2 })

S 2 = ( t + b ) 2 ( a t ) ( a + t ) \Rightarrow { S }^{ 2 }={ (t+b) }^{ 2 }({ a }-t)(a+t)

3 S 2 = ( t + b ) ( t + b ) ( 3 a 3 t ) ( a + t ) \Rightarrow { 3S }^{ 2 }={ (t+b) }(t+b)(3{ a }-3t)(a+t)

Applying the A M G M AM-GM inequality with 4 positive numbers: t + b t+b , t + b t+b , 3 a 3 t 3a-3t , a + t a+t , we have:

3 S 2 ( ( t + b ) + ( t + b ) + ( 3 a 3 t ) + ( a + t ) 4 ) 4 \Rightarrow { 3S }^{ 2 }\le { (\frac { (t+b)+(t+b)+(3a-3t)+(a+t) }{ 4 } ) }^{ 4 }

3 S 2 ( 2 a + b 2 ) 4 \Rightarrow { 3S }^{ 2 }\le { (\frac { 2a+b }{ 2 } ) }^{ 4 }

3 S 2 ( 1 2 ) 4 \Rightarrow { 3S }^{ 2 }\le { (\frac { 1 }{ 2 } ) }^{ 4 }

S 2 1 48 \Rightarrow { S }^{ 2 }\le \frac { 1 }{ 48 }

S 3 12 \Rightarrow S\le \frac { \sqrt { 3 } }{ 12 } .

The equality holds if and only if t + b = 3 a 3 t = a + t t+b= 3a-3t= a+t

{ a = b 2 a = 4 t \Rightarrow \begin{cases} a=b \\ 2a=4t \end{cases}

{ 3 a = 1 t a = 1 2 \Rightarrow \begin{cases} 3a=1 \\ \frac { t }{ a } =\frac { 1 }{ 2 } \end{cases}

{ a = 1 3 A E A C = 1 2 \Rightarrow \begin{cases} a=\frac { 1 }{ 3 } \\ \frac { AE }{ AC } =\frac { 1 }{ 2 } \end{cases}

{ A C = 1 3 sin ( A C E ) = 1 2 \Rightarrow \begin{cases} AC=\frac { 1 }{ 3 } \\ \sin { (\angle ACE) } =\frac { 1 }{ 2 } \end{cases}

{ x y = 1 3 A C E = 30 ° \Rightarrow \begin{cases} \frac { x }{ y } =\frac { 1 }{ 3 } \\ \angle ACE=30° \end{cases}

{ x = 1 y = 3 A C D = 120 ° \Rightarrow \begin{cases} x=1 \\ y=3 \\ \angle ACD=120° \end{cases}

{ x = 1 y = 3 z = 120 \Rightarrow \begin{cases} x=1 \\ y=3 \\ z=120 \end{cases}

x y z = 360 \Rightarrow xyz=360 .

We have our final answer: 360 \boxed{360} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...