You are supposed to solve this (part 2)

Level pending

Let p 1 , p 2 , . . . , p 2017 { p }_{ 1 },{ p }_{ 2 },...,{ p }_{ 2017 } be the random 2017 odd prime numbers and p 1 p 2 . . . p 2017 { p }_{ 1 }\neq { p }_{ 2 }\neq ...\neq { p }_{ 2017 } . Let n = p 1 p 2 . . . p 2017 n={ p }_{ 1 }{ p }_{ 2 }...{ p }_{ 2017 } . A triangle is a "beautiful triangle" if it is a right triangle, its sides' lengths are integers and the radius of the incircle of the triangle is n. Let X be the number of "beautiful triangles". Find the last 2 digits of X.

Note: \textbf{Note:} It is not 00.


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Minh Bùi Nhật
Jan 21, 2020

Source: Geogebra

Suppose there is a right triangle ABC, has two side AB = a; AC = b (a and b are 2 positive integers). Let S and p be the area and half of the perimeter of the triangle respectively. We have:

{ S = 1 2 a b p = 1 2 ( a + b + a 2 + b 2 ) \begin{cases} S\quad =\quad \frac { 1 }{ 2 } ab \\ p\quad =\quad \frac { 1 }{ 2 } (a+b+\sqrt { { a }^{ 2 }+{ b }^{ 2 } } ) \end{cases}

Let r be the radius of the circumcircle of the triangle ABC, we have:

r = S p = a b a + b + a 2 + b 2 = a + b a 2 + b 2 2 ( 1 ) r=\frac { S }{ p } =\frac { ab }{ a+b+\sqrt { { a }^{ 2 }+{ b }^{ 2 } } } =\frac { a+b-\sqrt { { a }^{ 2 }+{ b }^{ 2 } } }{ 2 } (1)

Let I be the center of the circumcircle. Pick a point D on AB such as I D A B ID\bot AB . From A B C \triangle ABC , we have:

I A B = 1 2 B A C > 1 2 A B C = A B I \angle IAB=\frac { 1 }{ 2 } \angle BAC>\frac { 1 }{ 2 } \angle ABC=\angle ABI .

Hence I B > I A IB>IA , that also means B D > D A BD>DA .

We can conclude that, A B = B D + D A > 2 D A AB = BD + DA > 2DA .

Moreover, D A = D I DA = DI ( A D I \triangle ADI is a isosceles triangle at D). Hence

A B > 2 D I = 2 r . ( 2 ) AB > 2DI = 2r. (2)

Similarly, we also have A C > 2 r . ( 3 ) AC > 2r. (3)

From (1), (2) and (3) we have: { a + b a 2 + b 2 2 = n ( ) a , b < 2 n ( ) \begin{cases} \frac { a+b-\sqrt { { a }^{ 2 }+{ b }^{ 2 } } }{ 2 } =n (*)\\ a,b<2n (**)\end{cases} .

Clearly, 2 different "beautiful triangles" give us 2 differents of numbers (a,b), both satisfy * and *. We can also conclude that if a and b are 2 positive integers satisfy * and * , we can construct a "beautiful triangle" with 3 sides' length are a,b and 2n - (a+b).

It is easy to notice that X (remind: X is the number of "beautiful triangles") equals the number of possible values of a and b.

Let { a = 2 n + x b = 2 n + y \begin{cases} a=2n+x \\ b=2n+y \end{cases} .

For a and b to both satisfy * and ** if and only if x and y are positive integers both satisfy:

( 2 n + x ) + ( 2 n + y ) ( 2 n + x ) 2 + ( 2 n + y ) 2 = 2 n (2n+x)+(2n+y)-\sqrt { { (2n+x) }^{ 2 }+{ (2n+y) }^{ 2 } } =2n

2 n + x + y = ( 2 n + x ) 2 + ( 2 n + y ) 2 \Leftrightarrow 2n+x+y=\sqrt { { (2n+x) }^{ 2 }+{ (2n+y) }^{ 2 } }

( 2 n + x + y ) 2 = ( 2 n + x ) 2 + ( 2 n + y ) 2 \Leftrightarrow { (2n+x+y) }^{ 2 }={ (2n+x) }^{ 2 }+{ (2n+y) }^{ 2 }

2 ( 2 n + x ) y + y 2 = ( 2 n + y ) 2 \Leftrightarrow 2(2n+x)y+{ y }^{ 2 }={ (2n+y) }^{ 2 }

x y = 2 n 2 ( 4 ) \Leftrightarrow xy=2{ n }^{ 2 } (4) .

Hence, the number of possible values of a and b satisfy * and ** equals the number of possible values of x,y satisfy (4), which is the number of pairs of 2 positive integers both divide 2 n 2 2{ n }^{ 2 } and satisfy (4).

Because n is a odd number then 2 divides 2 n 2 2{ n }^{ 2 } , but not 4. Hence, in each group there is one odd factor and one even factor.

We can easily notice that each odd factor is in one and one group only, so the number of group equals the number of odd factors of 2 n 2 2{ n }^{ 2 } .

Because n 2 = p 1 2 p 2 2 . . . p 2017 2 { n }^{ 2 }={ p }_{ 1 }^{ 2 }{ p }_{ 2 }^{ 2 }...{ p }_{ 2017 }^{ 2 } and p 1 , p 2 , . . . , p 2017 p_{ 1 },{ p }_{ 2 },...,{ p }_{ 2017 } are all odd prime numbers, the number of odd factors of n 2 { n }^{ 2 } is ( 2 + 1 ) 2017 = 3 2017 (2+1)^{ 2017 }={ 3 }^{ 2017 } .

Hence, X = 3 2017 X={ 3 }^{ 2017 } . But we aren't done yet, we have to find the last 2 digits of X.

We have 3 ϕ ( 100 ) = 3 40 1 ( m o d 100 ) { 3 }^{ \phi (100) }={ 3 }^{ 40 }\equiv 1(mod\quad 100)

3 2000 1 ( m o d 100 ) \Rightarrow { 3 }^{ 2000 }\equiv 1(mod\quad 100)

We also have 3 17 = 129140163 63 ( m o d 100 ) { 3 }^{ 17 }=129140163\equiv 63(mod\quad 100)

Hence X has 63 \boxed{63} as the last 2 digits.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...