A number theory problem by SRIJAN Singh

Find the remainder this expression is divided by 21 21

1 ! + 2 ! + 3 ! + 4 ! + 5 ! + + 2000 ! 1!+2!+3!+4!+5!+\dots+2000!

0 12 11 1 25 14

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 30, 2020

Since n ! m o d 21 = 0 n! \bmod 21 = 0 for n 7 n \ge 7 ,

n = 1 2000 n ! n = 1 6 n ! ( m o d 21 ) 1 ! + 2 ! + 3 ! + 4 ! + 5 ! + 6 ! ( m o d 21 ) 1 + 2 + 6 + 3 + 15 + 6 ( m o d 21 ) 12 ( m o d 21 ) \begin{aligned} \sum_{n=1}^{2000} n! & \equiv \sum_{n=1}^6 n! \pmod {21} \\ & \equiv 1! + 2! + 3! + 4! + 5! + 6! \pmod {21} \\ & \equiv 1 + 2 + 6 + 3 + 15 + 6 \pmod{21} \\ & \equiv \boxed{12} \pmod {21} \end{aligned}

Thank you sir for posting such a great solution.

SRIJAN Singh - 7 months, 2 weeks ago

Log in to reply

You are welcome

Chew-Seong Cheong - 7 months, 2 weeks ago

@Discrete Games hIYA.

SRIJAN Singh - 1 month, 3 weeks ago
Hongqi Wang
Oct 30, 2020

For any X 7 X \geq 7 ,

3 X ! , 7 X ! 21 X ! 3 | X!, 7 | X! \therefore 21| X!

So i = 1 2000 i ! i = 1 6 i ! = 873 12 m o d 21 \sum\limits_{i=1}^{2000} {i!} \equiv \sum\limits_{i=1}^{6} {i!} = 873 \equiv 12 \mod 21

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...