An algebra problem by Harshi Singh

Algebra Level 5

{ x + y + z = 670 x + y + z = 940 x + y + z = 544 \large \begin{cases} x + y + \sqrt{z} = 670 \\ x + \sqrt{y} + z = 940 \\ \sqrt{x} + y + z = 544 \end{cases}

Find the value of x + y + z x + y + z .


The answer is 1050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

{ x + y + z = 670 x + y + z = 940 x + y + z = 544 \large \begin{aligned} \begin{cases} x+y+\sqrt{z} = 670 \\ x+\sqrt{y}+z=940 \\ \sqrt{x} + y+z=544 \end{cases} \end{aligned}

Each of the equations have one term involving square root on LHS and rest all including RHS are integers \text{Each of the equations have one term involving square root on LHS and rest all including RHS are integers} The equations clearly imply that all of x,y,z are perfect squares . \text{The equations clearly imply that all of x,y,z are perfect squares .}

Let { x = a 2 y = b 2 where a,b,c N z = c 2 \begin{aligned} \text{Let } \begin{cases} x=a^2 \\ y=b^2 \text{ where a,b,c } \in \mathbb{N} \\ z=c^2\end{cases} \end{aligned}

The modified equations are : \text{The modified equations are : }

{ a 2 + b 2 + c = 670 a 2 + b + c 2 = 940 a + b 2 + c 2 = 544 \large \begin{aligned} \begin{cases} a^2+b^2+c = 670 \\ a^2+b+c^2=940 \\ a + b^2+c^2=544 \end{cases} \end{aligned}

Now we subtract the equations to derive \text{Now we subtract the equations to derive }

a ( a 1 ) c ( c 1 ) = 670 544 = 126 \begin{aligned} a(a-1) - c(c-1) = 670-544=126\end{aligned}

a ( a 1 ) b ( b 1 ) = 940 544 = 396 \begin{aligned} a(a-1) - b(b-1) = 940-544=396\end{aligned}

c ( c 1 ) b ( b 1 ) = 940 670 = 270 \begin{aligned} c(c-1) - b(b-1) = 940-670=270\end{aligned}

We note that : a ( a 1 ) > c ( c 1 ) > b ( b 1 ) \text{We note that : } a(a-1) > c(c-1) > b(b-1)

From c ( c 1 ) = b ( b 1 ) + 270 we conclude that c ( c 1 ) > 270 \text{From } c(c-1)=b(b-1)+270 \text{ we conclude that } c(c-1) > 270

c ( c 1 ) > 270 c 2 c 270 > 0 \begin{aligned} c(c-1)>270 \implies c^2-c-270>0\end{aligned}

On solving we get c 17 & checking for first few values of c as smallest c is 17 we get \text{On solving we get }c\ge17 \text{ \& checking for first few values of c as smallest c is 17 we get}

{ c = 17 a ( a 1 ) = 126 + 17.16 = 398 Not of the form a(a-1) rejected c = 18 a ( a 1 ) = 126 + 18.17 = 432 Not of the form a(a-1) rejected c = 19 a ( a 1 ) = 126 + 19.18 = 468 Not of the form a(a-1) rejected c = 20 a ( a 1 ) = 126 + 20.19 = 506 = 23.22 Selected \begin{aligned} \begin{cases} c=17\implies a(a-1) = 126+17.16=398 \text{ Not of the form a(a-1) } \implies \text{ rejected} \\ c=18\implies a(a-1) = 126+18.17=432 \text{ Not of the form a(a-1) } \implies \text{ rejected} \\ c=19\implies a(a-1) = 126+19.18=468 \text{ Not of the form a(a-1) } \implies \text{ rejected} \\ c=20\implies a(a-1) = 126 + 20.19 = 506 = \color{#624F41}{23.22} \implies \text{Selected} \end{cases}\end{aligned}

Solving c=17 we get the other values as follows : \text{Solving c=17 we get the other values as follows :}

c = 20 z = c 2 = 400 c=20\implies z=c^2=400

a = 23 x = a 2 = 529 a=23\implies x=a^2=529

b = 11 y = b 2 = 121 b=11\implies y=b^2=121

Finally we get x + y + z = 1050 \large \text{Finally we get } \boxed{x+y+z=1050}

Moderator note:

This solution requires the assumption of integers (which I have just removed from the problem). Furthermore, this solution doesn't prove that we have a unique answer, but that this is the "smallest" answer that we can find.

In fact, if all that we know is that these values are non-negative (because of the square roots), we can still arrive at this unique answer. Do you know how to show this?

@Moderator Why is this the "smallest" answer we can find?

Bhaskar Pandey - 8 months, 2 weeks ago

Log in to reply

Because in the solution, all that it establishes is c 2 c 270 0 c^2 - c - 270 \geq 0 (and likewise other similar inequalities).
It then uses the (non-ideal) assumption that a , b , c a,b,c are integers, to arrive at the solution set.

Calvin Lin Staff - 8 months, 1 week ago

Because the smallest of c which c(c-1) bigger than 270 and have consecutive mutiplier number of a

Radeon Huang - 8 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...