You Can't Probably Just Do Trial and Error

What is the least positive integer A A in the form 3 a × 5 b × 7 c 3^a \times 5^b \times 7^c such that

  • when divided by 3, it is a perfect cube;
  • when divided by 5, it is a perfect 5 th 5^\text{th} power;
  • when divided by 7, it is a perfect 7 th 7^\text{th} power?

Submit your answer as a + b + c a + b + c .


Clarification:

  • Examples of perfect 5 th 5^\text{th} powers: 2 5 2^5 , 3 10 3^{10} , 6 60 6^{60}
  • Examples of perfect 7 th 7^\text{th} powers: 5 14 5^{14} , 9 49 9^{49} , 1 5 35 15^{35}


The answer is 106.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We note that

a 0 (mod 5) a 0 (mod 7) a 35 x where x is an integer. a 1 0 (mod 3) a 1 (mod 3) 35 x 1 (mod 3) x = 2 a = 35 ( 2 ) = 70 \begin{aligned} a & \equiv 0 \text{ (mod 5)} \\ a & \equiv 0 \text{ (mod 7)} \\ \implies a & \equiv 35x & \small \color{#3D99F6} \text{where }x \text{ is an integer.} \\ a - 1 & \equiv 0 \text{ (mod 3)} \\ a & \equiv 1 \text{ (mod 3)} \\ 35x & \equiv 1 \text{ (mod 3)} \\ \implies x & = 2 \\ \implies a & = 35(2) = 70 \end{aligned}

Similarly,

b 21 y where y is an integer. b 1 (mod 5) 21 y 1 (mod 5) y = 1 b = 21 \begin{aligned} b & \equiv 21y & \small \color{#3D99F6} \text{where }y \text{ is an integer.} \\ b & \equiv 1 \text{ (mod 5)} \\ 21y & \equiv 1 \text{ (mod 5)} \\ \implies y & = 1 \\ \implies b & = 21 \end{aligned}

And

c 15 z where z is an integer. c 1 (mod 7) 15 z 1 (mod 7) z = 1 c = 15 \begin{aligned} c & \equiv 15z & \small \color{#3D99F6} \text{where }z \text{ is an integer.} \\ c & \equiv 1 \text{ (mod 7)} \\ 15z & \equiv 1 \text{ (mod 7)} \\ \implies z & = 1 \\ \implies c & = 15 \end{aligned}

a + b + c = 70 + 21 + 15 = 106 \implies a+b+c = 70+21+15 = \boxed{106}

Christian Daang
Mar 1, 2017

Note that:

( a 1 ) m o d 3 0 b m o d 3 0 c m o d 3 0 a m o d 5 0 ( b 1 ) m o d 5 0 c m o d 5 0 a m o d 7 0 b m o d 7 0 ( c 1 ) m o d 7 0 \displaystyle \begin{aligned} & (a-1) \mod 3 \equiv 0 \\ & b \mod 3 \equiv 0 \\ & c \mod 3 \equiv 0 \\ \\ & a \mod 5 \equiv 0 \\ & (b-1) \mod 5 \equiv 0 \\ & c \mod 5 \equiv 0 \\ \\ & a \mod 7 \equiv 0 \\ & b \mod 7 \equiv 0 \\ & (c - 1) \mod 7 \equiv 0 \end{aligned}

First, solve for a:

a m o d 3 1 a = 3 k + 1 a m o d 5 0 a = 5 c 5 c 3 k = 1 c = 2 , k = 3 c = 2 + 3 p , k = 3 + 5 p a = 15 p + 10 a m o d 7 0 a = 7 h 7 h = 15 p + 10 h = 10 , p = 4 smallest a = 7 ( 10 ) = 70 \displaystyle \begin{aligned} & a \mod 3 \equiv 1 \Longleftrightarrow a = 3k + 1 \\ & a \mod 5 \equiv 0 \Longleftrightarrow a = 5c \\ & \implies 5c - 3k = 1 \implies c = 2 , k = 3 \\ & c = 2 + 3p \ , \ k = 3 + 5p \\ & \implies a = 15p + 10 \\ \\ & a \mod 7 \equiv 0 \implies a = 7h \\ & \implies 7h = 15p + 10 \implies h = 10 \ , \ p = 4 \\ & \text{smallest a} \ = 7(10) = 70 \end{aligned}

Then, solve for b:

b m o d 5 1 b = 5 s + 1 b m o d 3 0 b = 3 a 3 a = 5 s + 1 a = 2 , s = 1 a = 2 + 5 t , s = 1 + 3 t b = 6 + 15 t b m o d 7 0 b = 7 y 7 y = 6 + 15 t y = 3 , t = 1 smallest b = 7 ( 3 ) = 21 \displaystyle \begin{aligned} & b \mod 5 \equiv 1 \Longleftrightarrow b = 5s + 1 \\ & b \mod 3 \equiv 0 \implies b = 3a \\ & \implies 3a = 5s + 1 \implies a = 2 , s = 1 \\ & a = 2 + 5t \ , \ s = 1 + 3t \\ & \implies b = 6 + 15t \\ \\ & b \mod 7 \equiv 0 \implies b = 7y \\ & \implies 7y = 6 + 15t \implies y = 3 \ , \ t = 1 \\ & \text{smallest b} \ = 7(3) = 21 \end{aligned}

Lastly, solve for c:

c m o d 7 1 c = 7 g + 1 c m o d 3 0 c = 3 f 7 g + 1 = 3 f g = 2 , f = 5 g = 2 + 3 q , f = 5 + 7 q c = 15 + 21 q c m o d 5 0 c = 5 v 5 v = 15 + 21 q q = 0 , v = 3 smallest c = 15 a + b + c = 70 + 21 + 15 = 106 \displaystyle \begin{aligned} & c \mod 7 \equiv 1 \implies c = 7g + 1 \\ & c \mod 3 \equiv 0 \implies c = 3f \\ & \implies 7g + 1 = 3f \implies g = 2 \ , \ f = 5 \\ & \implies g = 2 + 3q \ , \ f = 5 + 7q \\ & \implies c = 15+21q \\ \\ & c \mod 5 \equiv 0 \implies c = 5v \\ & \implies 5v = 15+21q \implies q = 0 \ , \ v = 3 \\ & \text{smallest c} \ = 15 \\ & \therefore \boxed{a + b + c = 70+21+15 = 106} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...