You Could Count Them All.

How many pairs of integers ( a , b ) (a,b) , where 0 a < b 100 0\le a<b\le 100 , satisfy ( b 2 a 2 ) 2 ( m o d 5 ) , \left( b^{2}-a^{2}\right) \equiv 2\pmod{5}, ( b 2 a 2 ) 5 ( m o d 8 ) ? \left( b^{2}-a^{2}\right) \equiv 5\pmod{8}?


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L e t E x p = ( b 2 a 2 ) T o f i n d E x p 2 ( m o d 5 ) 5 ( m o d 8 ) . Let~ Exp~ =~ (~b^{2} - a^{2}~) ~~~~~~~To~ find~~Exp~~≡~2~(mod~5) ≡~5~(mod~8). ~~~ F i r s t i s t r u e i f u n i t v a l u e o f E x p i s 2 o r 7. O N L Y 7 c a n s a t i s f y t h e s e c o n d . First~is~true~if~ unit~value~of~Exp~is~2~~or~~7.~~ONLY~7 ~can~satisfy ~the~second.~ \color\green{So~unit ~value~of~~(~b^{2} - a^{2}~)~ ~is~~7.}

~A~ square~of~an~ integer~~can~have~only ~\color\red{0,~1,~4,~5,~6~and~9~}~ ~~ at~its~unit~value.

7 c a n b e o b t a i n e d f r o m ( b 2 , a 2 ) b y ( 11 , 4 ) . ~~~~~~~~~~~~~~7~can~ be~obtained~from~~(b^{2}, a^{2}) ~~by~ (11, 4).

T h a t i s ( b , a ) = ( 1 o r 9 , 2 o r 8 ) = ( 1 , 2 ) , ( 1 , 8 ) a n d ( 9 , 2 ) , ( 9 , 8 ) . That~is~~(b,a)=~(1~or~9, 2~o~r8)=(1,2),(1,8)~~and~~(9,2),(9,8).~

L e t u n i t v a l u e o f b = p , u n i t v a l u e o f a = q . X , Y = 0 , 1 , . . . 9. Let~unit ~value~of~ b=p,~~~~~~~unit~value~of~a=q.~~~~~~~X,~Y=0,~1,~.~.~.~9. S o w e h a v e b = 10 X + p a n d a = 10 Y + q . ~~~~~~~~~~~~~~~~~~~~~~~So~we~have~~~~~b=10X+p~~~~~and~~~~~a=10Y +q. \color\green {\therefore~~ (~b^{2} - a^{2}~)~ =~ (~10X + p~)^{2} - (10Y + q)^{2} }

0 ( m o d 8 ) { ( 10 X + p ) 2 ( 10 Y + q ) 2 5 } ( m o d 8 ) ~~~~~~~\therefore~~0~(mod~8)~≡\{ (~10X + p~)^{2} - (10Y + q)^{2}-5\}~~ (mod~8) { 100 X 2 + 20 X p 100 Y 2 20 Y q + p 2 q 2 5 } ( m o d 8 ) ~~~~~~~~~~~~≡\{ 100X^{2}+20Xp-100Y^{2}-20Yq+p^{2}-q^{2}-5\}~~ (mod~8) \color\green{ ≡\{4X^{2}+4Xp-4Y^{2}-4Yq+p^{2}-q^{2}-5\}~~(mod~8)..........(1)}

For(b,a)=\color\red{(1,2)}:~~~~~~p=1,~q=2,~~~~~~~~~(1)~~~~~ becomes~~~~~ { 4 X 2 + 4 X 4 Y 2 8 Y q + 1 4 5 } ( m o d 8 ) ≡\{4X^{2}+4X-4Y^{2}-8Yq+1-4-5\}~(mod~8)~~ { ( 4 X 2 + 4 X 4 Y 2 } ( m o d 8 ) ( 1 ) t r u e o n l y f o r e v e n Y ≡\{(4X^{2}+4X-4Y^{2}\}~(mod~8)~~(1)~true~only~for~even~Y

For(b,a)=\color\red{(1,8)}:~~~~~~p=1,~q=8,~~~~~~~~~(1) ~~~~~becomes~~~~ { 4 X 2 + 4 X 4 Y 2 8 Y q + 1 64 5 } ( m o d 8 ) ≡\{4X^{2}+4X-4Y^{2}-8Yq+1-64-5\}~(mod~8)~~ ( 4 X 2 + 4 X 4 Y 2 4 ) ( m o d 8 ) ( 1 ) t r u e o n l y f o r o d d Y ≡(4X^{2}+4X-4Y^{2}-4)~(mod~8)~~~(1)~true~only~for~odd~Y

S i m i l a r l y f o r b o t h ( b , a ) = ( 9 , 2 ) , ( 9 , 8 ) ( 1 ) b e c o m e s Similarly~ for~~ both~~(b,a)= (9,2),(9,8)~~~~~~~~~~~(1)~~~~~ becomes
( 4 X 2 + 4 X 4 ) ( m o d 8 ) w h i c h i s N E V E R 0 ( m o d 8 ) ≡(4X^{2}+4X-4)~(mod~8)~~which~ is~ NEVER ~≡0~(mod~8)

I f X , Y c a n t a k e a l l v a l u e s f r o m 0 t o 9 t h e r e w o u l d b e 100 s o l u t i o n s . If~X,~Y~can~ take~ all~ values~ from~ ~0~to~~9~there~ would ~ be~ 100~ solutions.

B u t f o r ( b , a ) = ( 1 , 2 ) , Y s h o u l d b e o n l y E V E N , w e g e t o n l y 50 S o l u t i o n s . But~for~(b,a)=(1,2),~~~Y~should~be~only~EVEN,~we~ get~ only~~50~~Solutions.

F o r ( b , a ) = ( 1 , 8 ) Y s h o u l d b e o n l y O D D . , w e g e t o n l y 50 S o l u t i o n s . For~(b,a)=(1,8)~Y~ ~should~be~ only~ODD. ,~we~ get~ only~~50~~Solutions. 50 + 50 = 100 ~\boxed{50+50=100}

As a suggestion, I think you should clarify that the problem statment is atually, how many pairs of integers (a,b) such that b 2 a 2 b^{2}-a^{2} is congruent to 2 mod 5 and congruent to 5 mod 8.

Evan Prout - 6 years, 9 months ago

b > a but u used (b,a) = (1,8)

Amar Mavi - 5 years, 3 months ago

What's the?I don't know the weather have being changed from when? However,This problem have no integer solution.Why? because for all integer x: x^2=0,1,4 mod 5 . Thus,There are no (b^2 -a^2)=2 mod5 that equivalent

Sereysopea Ung - 6 years, 9 months ago

Log in to reply

Please treat others with respect.

If b 2 1 , a 2 4 ( m o d 5 ) b^2 \equiv 1, a^2 \equiv 4 \pmod{5} , then we have b 2 a 2 2 ( m o d 5 ) b^2 - a^2 \equiv 2 \pmod{5} . That is how he concluded that

" ( b , a ) = ( 1 or 9 , 2 or 8 ) ( m o d 10 ) (b,a)=(1 \text{ or } 9, 2 \text{ or }8) \pmod{10} "

Calvin Lin Staff - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...