How many pairs of integers ( a , b ) , where 0 ≤ a < b ≤ 1 0 0 , satisfy ( b 2 − a 2 ) ≡ 2 ( m o d 5 ) , ( b 2 − a 2 ) ≡ 5 ( m o d 8 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
As a suggestion, I think you should clarify that the problem statment is atually, how many pairs of integers (a,b) such that b 2 − a 2 is congruent to 2 mod 5 and congruent to 5 mod 8.
b > a but u used (b,a) = (1,8)
What's the?I don't know the weather have being changed from when? However,This problem have no integer solution.Why? because for all integer x: x^2=0,1,4 mod 5 . Thus,There are no (b^2 -a^2)=2 mod5 that equivalent
Log in to reply
Please treat others with respect.
If b 2 ≡ 1 , a 2 ≡ 4 ( m o d 5 ) , then we have b 2 − a 2 ≡ 2 ( m o d 5 ) . That is how he concluded that
" ( b , a ) = ( 1 or 9 , 2 or 8 ) ( m o d 1 0 ) "
Problem Loading...
Note Loading...
Set Loading...
L e t E x p = ( b 2 − a 2 ) T o f i n d E x p ≡ 2 ( m o d 5 ) ≡ 5 ( m o d 8 ) . F i r s t i s t r u e i f u n i t v a l u e o f E x p i s 2 o r 7 . O N L Y 7 c a n s a t i s f y t h e s e c o n d . \color\green{So~unit ~value~of~~(~b^{2} - a^{2}~)~ ~is~~7.}
~A~ square~of~an~ integer~~can~have~only ~\color\red{0,~1,~4,~5,~6~and~9~}~ ~~ at~its~unit~value.
7 c a n b e o b t a i n e d f r o m ( b 2 , a 2 ) b y ( 1 1 , 4 ) .
T h a t i s ( b , a ) = ( 1 o r 9 , 2 o r 8 ) = ( 1 , 2 ) , ( 1 , 8 ) a n d ( 9 , 2 ) , ( 9 , 8 ) .
L e t u n i t v a l u e o f b = p , u n i t v a l u e o f a = q . X , Y = 0 , 1 , . . . 9 . S o w e h a v e b = 1 0 X + p a n d a = 1 0 Y + q . \color\green {\therefore~~ (~b^{2} - a^{2}~)~ =~ (~10X + p~)^{2} - (10Y + q)^{2} }
∴ 0 ( m o d 8 ) ≡ { ( 1 0 X + p ) 2 − ( 1 0 Y + q ) 2 − 5 } ( m o d 8 ) ≡ { 1 0 0 X 2 + 2 0 X p − 1 0 0 Y 2 − 2 0 Y q + p 2 − q 2 − 5 } ( m o d 8 ) \color\green{ ≡\{4X^{2}+4Xp-4Y^{2}-4Yq+p^{2}-q^{2}-5\}~~(mod~8)..........(1)}
For(b,a)=\color\red{(1,2)}:~~~~~~p=1,~q=2,~~~~~~~~~(1)~~~~~ becomes~~~~~ ≡ { 4 X 2 + 4 X − 4 Y 2 − 8 Y q + 1 − 4 − 5 } ( m o d 8 ) ≡ { ( 4 X 2 + 4 X − 4 Y 2 } ( m o d 8 ) ( 1 ) t r u e o n l y f o r e v e n Y
For(b,a)=\color\red{(1,8)}:~~~~~~p=1,~q=8,~~~~~~~~~(1) ~~~~~becomes~~~~ ≡ { 4 X 2 + 4 X − 4 Y 2 − 8 Y q + 1 − 6 4 − 5 } ( m o d 8 ) ≡ ( 4 X 2 + 4 X − 4 Y 2 − 4 ) ( m o d 8 ) ( 1 ) t r u e o n l y f o r o d d Y
S i m i l a r l y f o r b o t h ( b , a ) = ( 9 , 2 ) , ( 9 , 8 ) ( 1 ) b e c o m e s
≡ ( 4 X 2 + 4 X − 4 ) ( m o d 8 ) w h i c h i s N E V E R ≡ 0 ( m o d 8 )
I f X , Y c a n t a k e a l l v a l u e s f r o m 0 t o 9 t h e r e w o u l d b e 1 0 0 s o l u t i o n s .
B u t f o r ( b , a ) = ( 1 , 2 ) , Y s h o u l d b e o n l y E V E N , w e g e t o n l y 5 0 S o l u t i o n s .
F o r ( b , a ) = ( 1 , 8 ) Y s h o u l d b e o n l y O D D . , w e g e t o n l y 5 0 S o l u t i o n s . 5 0 + 5 0 = 1 0 0