A Slim Right Triangle

Geometry Level 3

Triangle A B C ABC is right angled at C C . A D AD splits B A C \angle BAC in the ratio 2 : 1 , 2:1, where C A D \angle CAD is smaller.

If A C = 2 AC=2 and C D = 1 CD=1 , find the length of B D BD .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jan 20, 2016

Let C A D = θ \angle CAD = \theta , then B A D = 2 θ \angle BAD = 2\theta and B A C = 3 θ \angle BAC = 3 \theta .

We note that:

B C A C = tan B A C = tan ( 3 θ ) = 3 tan θ tan 3 θ 1 3 tan 2 θ We also note that tan C A D = tan θ = C D A C = 1 2 = 3 2 1 8 1 3 4 = 11 2 B C = A C × tan θ = 2 × 11 2 = 11 B D = B C C D = 11 1 = 10 \begin{aligned} \frac{BC}{AC} & = \tan \angle BAC \\ & = \tan (3 \theta) \\ & = \frac{3 \tan \theta - \tan ^3 \theta }{1-3 \tan^2 \theta} \quad \quad \small \color{#3D99F6}{\text{We also note that } \tan \angle CAD = \tan \theta = \frac{CD}{AC} = \frac{1}{2} } \\ & = \frac{\frac{3}{2} - \frac{1}{8}}{1- \frac{3}{4}} = \frac{11}{2} \\ \Rightarrow BC & = AC \times \tan \theta = 2 \times \frac{11}{2} = 11 \\ \Rightarrow BD & = BC - CD = 11 - 1 = \boxed{10} \end{aligned}

Yeah the very same method.

Department 8 - 5 years, 4 months ago
Rishabh Jain
Jan 20, 2016

Given: AC=2, BC=1

In ∆ACD tanx= C D A C = 1 2 \dfrac{CD}{AC}=\dfrac{1}{2} ........(1.) Using sine rule and equating AD in triangles ACD and ADB: \small{\color{goldenrod}{\text{Using sine rule and equating AD in triangles ACD and ADB:}}} C D sin x = cos 3 x × B D sin 2 x \dfrac{CD }{\sin x}=\cos 3x\times \dfrac{BD}{\sin 2x} Using sin2x=2(sinx)(cosx) and cos3x= 4 cos 3 x 3 cos x \small{\color{goldenrod}{\text{Using sin2x=2(sinx)(cosx) and cos3x=}4\cos^3x-3 \cos x}} BD= 2 4 cos 2 x 3 = 2 4 1 + tan 2 x 3 \dfrac{2}{4\cos^2 x-3}=\dfrac{2}{\dfrac{4}{1+\tan^2x}-3} = 10 ( U s i n g ( 1. ) ) \Large {\color{forestgreen}{=10}}~~~\small{(Using~(1.))}

Sharky Kesa
Jan 19, 2016

Let's chuck this triangle on to the Argand plane, with A A being the origin. Thus, C = 2 C=2 and D = 2 + i D=2+i . We also have that C A D \angle CAD is 1 3 C A B \frac {1}{3} \angle CAB . Thus,

3 arg D = arg B 3 \arg{D} = \arg{B}

arg D 3 = arg B \arg{D^3} = \arg{B}

D 3 = B D^3 = B

( 2 + i ) 3 = B (2+i)^3 = B

B = 2 + 11 i B = 2+11i

From this, we get B C = 11 BC=11 , which implies B D = 10 BD=10 .

Xuming Liang
Jan 21, 2016

Construct D D' on C B \overline CB such that C D = C D = 1 CD'=CD=1 and D D D'\ne D . Since A C D D AC\perp DD' , A C AC perpendicularly bisects D D DD' and thus D A D \triangle D'AD is isosceles, which implies D A D = 2 C A D = D A B \angle DAD'=2\angle CAD=\angle DAB . By Pythagorean Theorem A D = 5 AD'=\sqrt {5} and by angle bisector theorem D B A B = D D A D = 2 5 \frac {DB}{AB}=\frac {DD'}{AD'}=\frac {2}{\sqrt {5}}

Applying Pythagorean Theorem on A B C ABC : 4 + ( D B + 1 ) 2 = A B 2 4+(DB+1)^2=AB^2 .

By substitution: B D 2 8 B D 20 = ( B D 10 ) ( B D + 2 ) = 0 B D = 10 BD^2-8BD-20=(BD-10)(BD+2)=0\implies BD=\boxed {10} .

Mohtasim Nakib
Jan 22, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...