You don’t need to know the side lengths

Geometry Level 3

A point P P is inside triangle A B C ABC such that P A B = 1 0 \angle PAB=10^\circ , P B A = 2 0 \angle PBA=20^\circ , P C A = 3 0 \angle PCA=30^\circ , and P A C = 4 0 \angle PAC=40^\circ . Find P C B \angle PCB in degrees.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let D D be the reflection of A A accross the line B P BP . Then A P B = 180 ( 10 + 20 ) = 150 \angle APB=180-(10+20)=150 . Since D D is a reflection of A A accross the line B P BP , P B D = P B A = 20 \angle PBD=\angle PBA=20 , B P D = B P A = 150 \angle BPD=\angle BPA=150 and P D B = P A B = 10 \angle PDB=\angle PAB=10 . Therefore, A P D = 360 B P D B P A = 360 150 150 = 60 \angle APD=360-\angle BPD-\angle BPA=360-150-150=60 . Since A P = P D AP=PD , triangle A P D APD is an equilateral triangle. Since B A C = 50 \angle BAC=50 and A B D = 40 \angle ABD=40 , B D BD is perpendicular to A C AC . Let E E be the intersection of B D BD and A C AC . P E D = 180 C E D = 180 ( 90 30 ) = 120 \angle PED=180-\angle CED=180-(90-30)=120 . And so P E D + D A P = 180 \angle PED+\angle DAP=180 . We conclude that quadrilateral A P E D APED is a cyclic, and therefore D E A = D P A = 60 \angle DEA=\angle DPA=60 . Since A E D = C E D = 60 \angle AED=\angle CED=60 and B D BD is perpendicular to A C AC , we conclude that A B = B C AB=BC . That means that A C B = 50 \angle ACB=50 . Finally. P C B = 50 30 = 20 \angle PCB=50-30=20 .

Chew-Seong Cheong
Apr 21, 2017

Let P C B = θ \angle PCB = \theta . We note that C P A = 18 0 3 0 4 0 = 11 0 \angle CPA = 180^\circ - 30^\circ - 40^\circ = 110^\circ and B P A = 18 0 1 0 2 0 = 15 0 \angle BPA = 180^\circ - 10^\circ - 20^\circ = 150^\circ , therefore, B P C = 36 0 11 0 15 0 = 10 0 \angle BPC = 360^\circ - 110^\circ - 150^\circ = 100^\circ and C B P = 18 0 10 0 θ = 8 0 θ \angle CBP = 180^\circ - 100^\circ - \theta = 80^\circ - \theta . Now we can find θ \theta using sine rule on C B P \triangle CBP as follows:

sin θ B P = sin ( 8 0 θ ) C P \dfrac {\sin \theta}{BP} = \dfrac {\sin (80^\circ - \theta)}{CP}

We only need to find B P BP and C P CP . Let A C = 1 AC = 1 . By sine rule:

C P sin 4 0 = 1 sin 11 0 C P = sin 4 0 sin 11 0 B P sin 1 0 = A P sin 2 0 Note that A P = sin 3 0 sin 11 0 B P = sin 3 0 sin 1 0 sin 11 0 sin 2 0 \begin{aligned} \frac {CP}{\sin 40^\circ} & = \frac 1{\sin 110^\circ} \\ \implies CP & = \frac {\sin 40^\circ}{\sin 110^\circ} \\ \frac {BP}{\sin 10^\circ} & = \frac {\color{#3D99F6}AP}{\sin 20^\circ} & \small \color{#3D99F6} \text{Note that } AP = \frac {\sin 30^\circ}{\sin 110^\circ} \\ \implies BP & = \frac {{\color{#3D99F6}\sin 30^\circ}\sin 10^\circ}{{\color{#3D99F6}\sin 110^\circ}\sin 20^\circ} \end{aligned}

Now we have:

sin θ B P = sin ( 8 0 θ ) C P sin θ = B P C P sin ( 8 0 θ ) sin θ = sin 3 0 sin 1 0 sin 11 0 sin 2 0 × sin 11 0 sin 4 0 ( sin 8 0 cos θ cos 8 0 sin θ ) sin θ = sin 3 0 sin 1 0 sin 11 0 sin 2 0 × sin 11 0 sin 4 0 ( sin 8 0 cos θ cos 8 0 sin θ ) sin θ = cos θ 4 sin 4 0 tan 1 0 sin θ 4 sin 4 0 4 sin 4 0 sin θ = cos θ tan 1 0 sin θ tan θ = 1 4 sin 4 0 + tan 1 0 = sin 2 0 4 sin 2 0 sin 4 0 + sin 2 0 tan 1 0 = sin 2 0 2 ( cos 2 0 cos 6 0 ) + 2 sin 1 0 cos 1 0 × sin 1 0 cos 1 0 = sin 2 0 2 cos 2 0 1 + 2 sin 2 1 0 = sin 2 0 2 cos 2 0 cos 2 0 = tan 2 0 θ = 2 0 \begin{aligned} \frac {\sin \theta}{BP} & = \frac {\sin (80^\circ - \theta)}{CP} \\ \sin \theta & = \frac {BP}{CP} \sin (80^\circ - \theta) \\ \sin \theta & = \frac {\sin 30^\circ \sin 10^\circ}{\sin 110^\circ \sin 20^\circ} \times \frac {\sin 110^\circ}{\sin 40^\circ} (\sin 80^\circ \cos \theta - \cos 80^\circ \sin \theta) \\ \sin \theta & = \frac {\sin 30^\circ \sin 10^\circ}{\sin 110^\circ \sin 20^\circ} \times \frac {\sin 110^\circ}{\sin 40^\circ} (\sin 80^\circ \cos \theta - \cos 80^\circ \sin \theta) \\ \sin \theta & = \frac {\cos \theta}{4 \sin 40^\circ} - \frac {\tan 10^\circ \sin \theta}{4 \sin 40^\circ} \\ 4 \sin 40^\circ \sin \theta & = \cos \theta - \tan 10^\circ \sin \theta \\ \implies \tan \theta & = \frac 1{4\sin 40^\circ + \tan 10^\circ} \\ & = \frac {\color{#3D99F6}\sin 20^\circ}{4{\color{#3D99F6}\sin 20^\circ}\sin 40^\circ + {\color{#3D99F6}\sin 20^\circ}\tan 10^\circ} \\ & = \frac {\sin 20^\circ}{2(\cos 20^\circ - \cos 60^\circ) + 2\sin 10^\circ \cos 10^\circ \times \dfrac {\sin 10^\circ}{\cos 10^\circ}} \\ & = \frac {\sin 20^\circ}{2 \cos 20^\circ - 1 + 2\sin^2 10^\circ} \\ & = \frac {\sin 20^\circ}{2 \cos 20^\circ - \cos 20^\circ} \\ & = \tan 20^\circ \\ \implies \theta & = \boxed{20^\circ} \end{aligned}

Marta Reece
Apr 22, 2017

Angles easy to obtain are listed in image. Set C P = 1 CP=1 . Law of sines in A P C APC is a = sin ( 30 ) 1 sin ( 40 ) a=\sin(30)\frac{1}{\sin(40)}

Law of sines in A P B APB gives b = sin ( 10 ) a sin ( 20 ) = sin ( 10 ) sin ( 20 ) sin ( 30 ) sin ( 40 ) = 0.39493 b=\sin(10)\frac{a}{\sin(20)}=\frac{\sin(10)}{\sin(20)} \frac{\sin(30)}{\sin(40)}=0.39493

Law of cosines in C P B CPB gives us c = b 2 + 1 2 b cos ( 100 ) = 1.13716 c=\sqrt{b^2+1-2b\cos(100)}=1.13716

Law of sines in C P B CPB finally results in B C P = arccos ( 1 + c 2 b 2 2 c ) = 2 0 \angle BCP=\arccos(\frac{1+c^2-b^2}{2c})=20^\circ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...