Floored Cube Roots

Calculus Level 4

1 1 3 + 1 2 3 + 1 3 3 + + 1 2019 3 = ? \large \left \lfloor \dfrac{1}{\sqrt[3]{1}} + \dfrac{1}{\sqrt[3]{2}} + \dfrac{1}{\sqrt[3]{3}} + \cdots + \dfrac{1}{\sqrt[3]{2019}} \right \rfloor = \, ?

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 238.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manuel Kahayon
Aug 12, 2016

Let S = 1 1 3 + 1 2 3 + 1 3 3 + + 1 2019 3 S = \frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \cdots + \frac{1}{\sqrt[3]{2019}} . We then know that

S 1 2020 x 1 3 d x = 3 2 ( 202 0 2 3 1 2 3 ) = 238.19 \large S \approx \int _1^{2020} x^{-\frac{1}{3}} dx = \frac{3}{2} (2020^\frac{2}{3} - 1^\frac{2}{3}) = 238.19

Therefore, S 238.19 S \approx 238.19 . Therefore, S = 238.19 = 238 \lfloor S \rfloor = \lfloor 238.19 \rfloor = \boxed{238} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...