It's better to generalize this

Calculus Level 5

0 e x 3 d x \large \int_0^\infty e^{-x^3} \, dx

If the integral above equals to Γ ( a b ) \Gamma \left( \frac ab \right) for coprime positive integers a , b a,b , find the value of a + b a+b .

Bonus : Generalize this for 0 e x A d x \displaystyle \large \int_0^\infty e^{-x^A} \, dx with positive number A A .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
May 22, 2015

Consider the integral, I = 0 e x A d x \displaystyle I = \int_0^\infty e^{-x^A} \text{ d}x . Substitute x = u 1 A d x = 1 A u 1 A A d u \displaystyle x = u^{\frac{1}{A}} \Rightarrow \text{ d}x = \frac{1}{A} u^{\frac{1-A}{A}} \text{ d}u .
I = 0 e u 1 A u 1 A A d u \therefore I = \int_0^\infty e^{-u} \frac{1}{A} u^{\frac{1-A}{A}} \text{ d}u I = 1 A 0 u 1 A 1 e u d u \displaystyle I = \frac{1}{A} \int_0^\infty u^{\frac{1}{A} - 1} e^{-u} \text{ d}u

I = 1 A Γ ( 1 A ) = Γ ( 1 + A A ) \displaystyle \Rightarrow I = \frac{1}{A} \Gamma \left( \frac{1}{A} \right) = \Gamma \left( \frac{1 + A}{A} \right)
(Using the fact that t Γ ( t ) = Γ ( t + 1 ) t \Gamma \left(t \right) = \Gamma \left(t + 1 \right) )

0 e x A d x = Γ ( 1 + A A ) \therefore \int_0^\infty e^{-x^A} \text{ d}x = \Gamma \left( \frac{1 + A}{A} \right) Put A = 3 A = 3 to obtain the required answer as 7 \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...